Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-12T06:01:10.247Z Has data issue: false hasContentIssue false

Processing and microstructure characterization of a novel porous hierarchical TiO2 structure

Published online by Cambridge University Press:  31 January 2011

N. Chawla*
Affiliation:
School of Materials, Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287-8706
J. Ringnalda
Affiliation:
FEI Company, Hillsboro, Oregon 97124
*
a) Address all correspondence to this author. e-mail: nchawla@asu.edu
Get access

Abstract

We report on a novel biocompatible hierarchical TiO2 porous coating on the surface of Ti, processed via anodic oxidation. The coating consists of large (∼1–20 μm) pores on the microscale and nanotubes (∼50 nm diameter) on the nanoscale. This structure is exciting because of its potential application as a bioactive coating for Ti bone implants. Surface characterization of the coating showed nanotubes of relatively uniform diameter. The interface between TiO2 nanotubes and Ti, studied by transmission electron microscopy, was incoherent. The tubes were also somewhat interconnected.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Branemark, P.I.: Osseointegration and its experimental background. J. Prosthet. Dent. 59, 399 (1983).CrossRefGoogle Scholar
2.Li, P. and Ducheyne, P.: Quasi-biological apatite film induced by titanium in a simulated body fluid., J. Biomed. Mater. Res. 41, 341 (1998).3.0.CO;2-C>CrossRefGoogle Scholar
3.Balasundaram, G. and Webster, T.J.: A perspective on nanophase materials for orthopedic implant applications., J. Mater. Chem. 16, 3737 (2006).CrossRefGoogle Scholar
4.Pilliar, R.M.: Overview of surface variability of metallic endosseous dental implants: Textured and porous surface-structured designs. Implant Dent. 7, 305 (1998).Google Scholar
5.Kim, H.M., Miyaji, F., Kokubo, T., and Nakamura, T.: Preparation of bioactive Ti and its alloys via simple chemical surface treatment., J. Biomed. Mater. Res. 32, 409 (1996).Google Scholar
6.Lee, T.M., Wang, B.C., Yang, Y.C., Chang, E., and Yang, C.Y.: Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: In vivo study. J. Biomed. Mater. Res. 55, 360 (2001).3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
7.Pilliar, R.M.: Porous surfaced metallic-implants for orthopedic applications. J. Biomed. Mater. Res. Appl. Biomat. 21, 1 (1987).Google ScholarPubMed
8.Klawitter, J.J., Bagwell, J.B., Weinstein, A.M., Sauer, B.W., and Pruitt, J.R.: An evaluation of bone growth into porous high density polyethylene., J. Biomed. Mater. Res. 10, 311 (1976).Google Scholar
9.Webster, T.J., Celaletdin, E., Doremus, R.H., Siegel, R.W., and Bizios, R.: Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21, 1803 (2000).CrossRefGoogle ScholarPubMed
10.Yao, C. and Webster, T.J.: Anodization: A promising nano-modification technique of titanium implants for orthopedic applications., J. Nanosci. Nanotechnol. 6, 2682 (2006).CrossRefGoogle ScholarPubMed
11.Oh, S., Daraio, C., Chen, L.H., Pisanic, T., Finones, R., and Jin, S.: Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res., Part A 78, 97 (2006).CrossRefGoogle ScholarPubMed
12.Tsuchiya, H., Macak, J.M., Muller, L., Kunze, J., Muller, F., Greil, P., Virtanen, S., and Schmuki, P.: Hydroxyapatite growth on anodic TiO2 nanotubes. J. Biomed. Mater. Res., Part A 77, 534 (2006).CrossRefGoogle ScholarPubMed
13.Oh, S. and Jin, S.: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater. Sci. Eng., C 26, 1301 (2006).Google Scholar
14.Crawford, G.A., Chawla, N., Das, K., Bose, S., and Bandyopadhyay, A.: Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater. 3, 359 (2007).Google Scholar
15.Popat, K.C., Leoni, L., Grimes, C.A., and Desai, T.A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28, 3188 (2007).Google Scholar
16.Swan, E.E.L., Popat, K.C., Grimes, C.A., and Desai, T.A.: Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mater. Res., Part A 72, 288 (2005).CrossRefGoogle ScholarPubMed
17.Bloebaum, R.D., Beeks, D., Dorr, L.D., Savory, C.G., DuPont, J.A., and Hofmann, A.A.: Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin. Orthop. Relat. Res. 298, 19 (1994).Google Scholar
18.Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes., J. Mater. Chem. 17, 1451 (2007).Google Scholar
19.Raja, K.S., Misra, M., and Paramguru, K.: Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim. Acta 51, 154 (2005).CrossRefGoogle Scholar
20.Macak, J.M., Tsuchiya, H., and Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 44, 2100 (2005).CrossRefGoogle ScholarPubMed
21.Beranek, R., Hildebrand, H., and Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 (2003).CrossRefGoogle Scholar
22.Cai, Q., Paulose, M., Varghese, O.K., and Grimes, C.A.: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).CrossRefGoogle Scholar
23.Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N., and Grimes, C.A.: Fabrication of tapered, conical-shaped titania nanotubes., J. Mater. Res. 18, 2588 (2003).Google Scholar
24.Yasuda, K., Macak, J.M., Berger, S., Ghicov, A., and Schmuki, P.: Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals., J. Electrochem. Soc. 154, C472 (2007).CrossRefGoogle Scholar
25.Macak, J.M., Tsuchiya, H., Taveira, L., Aldabergerova, S., and Schmuki, P.: Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 44, 7463 (2005).Google Scholar
26.Crawford, G.A. and Chawla, N.: Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti. Scr. Mater. 60, 874 (2009).Google Scholar