Skip to main content Accessibility help
×
Home

Preparation of nanostructured Cu(OH)2 and CuO electrocatalysts for water oxidation by electrophoresis deposition

  • Jianying Wang (a1), Lei Zhu (a1), Lvlv Ji (a1) and Zuofeng Chen (a1)

Abstract

Herein, we report the synthesis of Cu(OH)2 nanobelts with high yield at low cost by a simple aqueous solution reaction. The Cu(OH)2-FTO electrode was then fabricated by a facile electrophoresis deposition method with the as-prepared Cu(OH)2 nanobelts, which require no binding agents. By subsequent heat treatment at 300 °C for 2 h, the Cu(OH)2-FTO electrode was converted to the CuO-FTO electrode. The investigation of electrocatalysis of the Cu(OH)2-FTO and CuO-FTO electrodes for water oxidation was conducted in a 0.2 M phosphate buffer solution at pH 12. The CuO-FTO electrode can catalyze water oxidation with an impressive onset overpotential of 370 mV and an overpotential of 500 mV for a current density of 1 mA/cm2 with a low Tafel slope of 57 mV/dec. This facile fabrication strategy is appealing for realizing the practical application of Cu-based electrocatalysts for water oxidation and is expected to be extended to prepare other heterocatalyst electrodes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Preparation of nanostructured Cu(OH)2 and CuO electrocatalysts for water oxidation by electrophoresis deposition
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Preparation of nanostructured Cu(OH)2 and CuO electrocatalysts for water oxidation by electrophoresis deposition
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Preparation of nanostructured Cu(OH)2 and CuO electrocatalysts for water oxidation by electrophoresis deposition
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: zfchen@tongji.edu.cn

Footnotes

Hide All

Contributing Editor: Rui Cao

Footnotes

References

Hide All
1. Gray, H.B.: Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).
2. Nocera, D.G.: Chemistry of personalized solar energy. Inorg. Chem. 48, 1000110017 (2009).
3. Nelson, N. and Ben-Shem, A.: The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971982 (2004).
4. Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 64746502 (2010).
5. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 64466473 (2010).
6. Turner, J.A.: A realizable renewable energy future. Science 285, 687689 (1999).
7. Zhong, D.K. and Gamelin, D.R.: Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 42024207 (2010).
8. Cao, R., Lai, W., and Du, P.: Catalytic water oxidation at single metal sites. Energy Environ. Sci. 5, 8134 (2012).
9. Barber, J.: Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185196 (2009).
10. Harriman, A., Pickering, I.J., Thomas, J.M., and Christensen, P.A.: Metal-oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc., Faraday Trans. 1(84), 27952806 (1988).
11. Horkans, J. and Shafer, M.W.: Investigation of electrochemistry of a series of metal dioxides with rutile-type structure—MoO2, WO2, ReO2, RuO2, OsO2, and IrO2 . J. Electrochem. Soc. 124, 12021207 (1977).
12. Carmo, M., Fritz, D.L., Merge, J., and Stolten, D.: A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 49014934 (2013).
13. Chen, M., Wu, Y., Han, Y., Lin, X., Sun, J., Zhang, W., and Cao, R.: An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution. ACS Appl. Mater. Interfaces 7, 2185221859 (2015).
14. Joya, K.S., Joya, Y.F., and de Groot, H.J.M.: Ni-based electrocatalyst for water oxidation developed in situ in a HCO3 /CO2 system at near-neutral pH. Adv. Energy Mater. 4, 1301929 (2014).
15. Du, J.L., Chen, Z.F., Ye, S.R., Wiley, B.J., and Meyer, T.J.: Copper as a robust and transparent electrocatalyst for water oxidation. Angew. Chem., Int. Ed. Engl. 54, 20732078 (2015).
16. Tagore, R., Crabtree, R.H., and Brudvig, G.W.: Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg. Chem. 47, 18151823 (2008).
17. Ellis, W.C., McDaniel, N.D., Bernhard, S., and Collins, T.J.: Fast water oxidation using iron. J. Am. Chem. Soc. 132, 1099010991 (2010).
18. McAlpin, J.G., Surendranath, Y., Dinca, M., Stich, T.A., Stoian, S.A., Casey, W.H., Nocera, D.G., and Britt, R.D.: EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 68826883 (2010).
19. Dinca, M., Surendranath, Y., and Nocera, D.G.: Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. U. S. A. 107, 1033710341 (2010).
20. Chen, H., Gao, Y., Lu, Z., Ye, L., and Sun, L.: Copper oxide film in situ electrodeposited from Cu(II) complex as highly efficient catalyst for water oxidation. Electrochim. Acta 230, 501507 (2017).
21. Chen, Z. and Meyer, T.J.: Copper(II) catalysis of water oxidation. Angew. Chem., Int. Ed. Engl. 52, 700703 (2013).
22. Cui, S., Liu, X., Sun, Z., and Du, P.: Noble metal-free copper hydroxide as an active and robust electrocatalyst for water oxidation at weakly basic pH. ACS Sustainable Chem. Eng. 4, 25932600 (2016).
23. Liu, X., Cui, S.S., Sun, Z.J., and Du, P.W.: Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim. Acta 160, 202208 (2015).
24. Liu, X., Jia, H.X., Sun, Z.J., Chen, H.Y., Xu, P., and Du, P.W.: Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochem. Commun. 46, 14 (2014).
25. Lu, C., Wang, J., and Chen, Z.: Water oxidation by copper-amino acid catalysts at low overpotentials. ChemCatChem 8, 21652170 (2016).
26. Yu, F., Li, F., Zhang, B., Li, H., and Sun, L.: Efficient electrocatalytic water oxidation by a copper oxide thin film in borate buffer. ACS Catal. 5, 627630 (2015).
27. Zhang, M.T., Chen, Z., Kang, P., and Meyer, T.J.: Electrocatalytic water oxidation with a copper(II) polypeptide complex. J. Am. Chem. Soc. 135, 20482051 (2013).
28. Zhang, W., Qi, J., Liu, K., and Cao, R.: A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation. Adv. Energy Mater. 6, 1502489 (2016).
29. Wang, J., Ji, L., Zuo, S., and Chen, Z.: Hierarchically structured 3D integrated electrodes by galvanic replacement reaction for highly efficient water splitting. Adv. Energy Mater. 7, 1700107 (2017).
30. McKone, J.R., Sadtler, B.F., Werlang, C.A., Lewis, N.S., and Gray, H.B.: Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166169 (2013).
31. Qi, J., Zhang, W., Xiang, R., Liu, K., Wang, H.Y., Chen, M., Han, Y., and Cao, R.: Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2, 1500199 (2015).
32. Liu, X., Sun, Z.J., Cui, S.S., and Du, P.W.: Cuprous oxide thin film directly electrodeposited from a simple copper salt on conductive electrode for efficient oxygen evolution reaction. Electrochim. Acta 187, 381388 (2016).
33. Lu, X. and Zhao, C.: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015).
34. Wang, J., Ji, L., and Chen, Z.: In situ rapid formation of a nickel–iron-based electrocatalyst for water oxidation. ACS Catal. 6, 69876992 (2016).
35. Wen, X., Zhang, W., and Yang, S.: Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir 19, 58985903 (2003).
36. Wang, W., Varghese, O.K., Ruan, C., Paulose, M., and Grimes, C.A.: Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. J. Mater. Res. 18, 27562759 (2011).
37. Lu, C., Qi, L., Yang, J., Zhang, D., Wu, N., and Ma, J.: Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J. Phys. Chem. B 108, 1782517831 (2004).
38. Deng, Y., Handoko, A.D., Du, Y., Xi, S., and Yeo, B.S.: In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 6, 24732481 (2016).
39. Lu, C., Du, J., Su, X-J., Zhang, M-T., Xu, X., Meyer, T.J., and Chen, Z.: Cu(II) aliphatic diamine complexes for both heterogeneous and homogeneous water oxidation catalysis in basic and neutral solutions. ACS Catal. 6, 7783 (2016).
40. Durando, M., Morrish, R., and Muscat, A.J.: Kinetics and mechanism for the reaction of hexafluoroacetylacetone with CuO in supercritical carbon dioxide. J. Am. Chem. Soc. 130, 1665916668 (2008).
41. McIntyre, N.S., Sunder, S., Shoesmith, D.W., and Stanchell, F.W.: Chemical information from XPS—Applications to the analysis of electrode surfaces. J. Vac. Sci. Technol. 18, 714721 (1981).
42. Joya, K.S. and de Groot, H.J.M.: Controlled surface-assembly of nanoscale leaf-type Cu-oxide electrocatalyst for high activity water oxidation. ACS Catal. 6, 17681771 (2016).
43. Li, T.T., Cao, S., Yang, C., Chen, Y., Lv, X.J., and Fu, W.F.: Electrochemical water oxidation by in situ-generated copper oxide film from [Cu(TEOA)(H2O)2][SO4] complex. Inorg. Chem. 54, 30613067 (2015).
44. Tae, E.L., Song, J., Lee, A.R., Kim, C.H., Yoon, S., Hwang, I.C., Kim, M.G., and Yoon, K.B.: Cobalt oxide electrode doped with iridium oxide as highly efficient water oxidation electrode. ACS Catal. 5, 55255529 (2015).
45. Bediako, D.K., Surendranath, Y., and Nocera, D.G.: Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 135, 36623674 (2013).
46. Li, F., Bai, L., Li, H., Wang, Y., Yu, F., and Sun, L.: An iron-based thin film as a highly efficient catalyst for electrochemical water oxidation in a carbonate electrolyte. Chem. Commun. 52, 57535756 (2016).
47. Zhang, W., Wu, Y., Qi, J., Chen, M., and Cao, R.: A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 7, 1602547 (2017).

Keywords

Related content

Powered by UNSILO

Preparation of nanostructured Cu(OH)2 and CuO electrocatalysts for water oxidation by electrophoresis deposition

  • Jianying Wang (a1), Lei Zhu (a1), Lvlv Ji (a1) and Zuofeng Chen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.