Skip to main content Accessibility help

Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging

  • Min Zheng (a1), Shi Liu (a2), Jing Li (a2), Zhigang Xie (a2), Dan Qu (a3), Xiang Miao (a4), Xiabin Jing (a5), Zaicheng Sun (a6) and Hongyou Fan (a7)...


Carbon nanodots (CDs) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. Here we report a facile thermal pyrolysis route to prepare CDs with high quantum yield (QY) using citric acid as the carbon source and ethylene diamine derivatives (EDAs) including triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and polyene polyamine (PEPA) as the passivation agents. We find that the CDs prepared from EDAs, such as TETA, TEPA and PEPA, show relatively high photoluminescence (PL) QY (11.4, 10.6, and 9.8%, respectively) at λex of 465 nm. The cytotoxicity of the CDs has been investigated through in vitro and in vivo bio-imaging studies. The results indicate that these CDs possess low toxicity and good biocompatibility. The unique properties such as the high PL QY at large excitation wave length and the low toxicity of the resulting CDs make them promising fluorescent nanoprobes for applications in optical bio-imaging and biosensing.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., and Scrivens, W.A.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004).
2.Cao, L., Wang, X., Meziani, M.J., Lu, F.S., Wang, H.F., Luo, P.G., Lin, Y., Harruff, B.A., Veca, L.M., Murray, D., Xie, S.Y., and Sun, Y.P.: Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318 (2007).
3.Yang, S.T., Cao, L., Luo, P.G., Lu, F.S., Wang, X., Wang, H.F., Meziani, M.J., Liu, Y.F., Qi, G., and Sun, Y.P.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009).
4.Zhu, A., Qu, Q., Shao, X., Kong, B., and Tian, Y.: Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem., Int. Ed. 51, 7185 (2012).
5.Qu, D., Zheng, M., Li, J., Sun, Z., and Xie, Z.: Tailoring color emissions from N doped graphene quantum dots for bioimaging applications. Light: Sci. Appl. 4, e364 (2015).
6.Huang, P., Lin, J., Wang, X., Wang, Z., Zhang, C., He, M., Wang, K., Chen, F., Li, Z., Shen, G., Cui, D., and Chen, X.: Light-triggered theranostic based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 24, 5104 (2014).
7.Zheng, M., Liu, S., Li, J., Qu, D., Zhao, H., Guan, X., Hu, X., Xie, Z., Jing, X., and Sun, Z.: Integrating oxaliplatin with highly luminescent carbon dots: An unprecedented theranostic agent for personalized medicine. Adv. Mater. 26, 3554 (2014).
8.Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C.H.A., Yang, X., and Lee, S.T.: Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 49, 4430 (2010).
9.Cao, L., Sahu, S., Anilkumar, P., Bunker, C.E., Xu, J.A., Fernando, K.A.S., Wang, P., Guliants, E.A., Tackett, K.N., and Sun, Y.P.: Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc. 133, 4754 (2011).
10.Ming, H., Ma, Z., Liu, Y., Pan, K., Yu, H., Wang, F., and Kang, Z.: Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 41, 9526 (2012).
11.Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.T., Zhong, J., and Kang, Z.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970974 (2015).
12.Qu, D., Sun, Z., Zheng, M., Li, J., Zhang, Y., and Zhang, G.: Three colors emission from S, N co-doped graphene quantum dots for visible light H2 production and bioimaging. Adv. Opt. Mater. 3, 360 (2015).
13.Guo, X., Wang, C.F., Yu, Z.Y., Chen, L., and Chen, S.: Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem. Commun. 48, 2692 (2012).
14.Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., Teng, K.S., Luk, C.M., Zeng, S., Hao, J., and Lau, S.P.: Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102 (2012).
15.Zhang, X., Zhang, Y., Wang, Y., Kalytchuk, S., Kershaw, S.V., Wang, Y., Wang, P., Zhang, T., Zhao, Y., Zhang, H., Cui, T., Wang, Y., Zhao, J., Yu, W.W., and Rogach, A.L.: Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 7, 11234 (2013).
16.Baker, S.N. and Baker, G.A.: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 49, 6726 (2010).
17.Sun, Y.P., Zhou, B., Lin, Y., Wang, W., Fernando, K.A.S., Pathak, P., Meziani, M.J., Harruff, B.A., Wang, X., Wang, H.F., Luo, P.G., Yang, H., Kose, M.E., Chen, B.L., Veca, L.M., and Xie, S.Y.: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756 (2006).
18.Zhou, J., Booker, C., Li, R., Zhou, X., Sham, T.K., Sun, X., and Ding, Z.: An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744 (2007).
19.Liu, H., Ye, T., and Mao, C.: Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 46, 6473 (2007).
20.Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., and Yang, X.: Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 34, 5118 (2009).
21.Ma, Z., Ming, H., Huang, H., Liu, Y., and Kang, Z.: Large scale synthesis of carbon nanospheres and their application as electrode materials for heavy metal ions detection. New J. Chem. 36, 861 (2012).
22.Yang, Z.C., Wang, M., Yong, A.M., Wong, S.Y., Zhang, X.H., Tan, H., Chang, A.Y., Li, X., and Wang, J.: Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 47, 11615 (2011).
23.Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A.M., Al-Youbi, A.O., and Sun, X.: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037 (2012).
24.Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H., and Yang, B.: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 52, 3953 (2013).
25.Bourlinos, A.B., Stassinopoulos, A., Anglos, D., Zboril, R., Georgakilas, V., and Giannelis, E.P.: Photoluminescent carbogenic dots. Chem. Mater. 20, 4539 (2008).
26.Wang, F., Xie, Z., Zhang, H., Liu, C.Y., and Zhang, Y.G.: Highly luminescent organosilane functionalized carbon dots. Adv. Funct. Mater. 21, 1027 (2011).
27.Krysmann, M.J., Kelarakis, A., Dallas, P., and Giannelis, E.P.: Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747 (2012).
28.Liu, C., Zhang, P., Zhai, X., Tian, F., Li, W., Yang, J., Liu, Y., Wang, H., Wang, W., and Liu, W.: Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33, 3604 (2012).
29.Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., and Liu, W.: Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 48, 7955 (2012).
30.Tian, L., Ghosh, D., Chen, W., Pradhan, S., Chang, X., and Chen, S.: Nanosized carbon particles from natural gas soot. Chem. Mater. 21, 2803 (2009).
31.Zheng, M., Xie, Z., Qu, D., Li, D., Du, P., Jing, X., and Sun, Z.: On–off–on fluorescent carbon dots nanosensor for recognition of chromium (VI) and ascorbic acid based on the inner filter effect. ACS Appl. Mater. Interfaces 5, 13242 (2013).
32.Kwon, W. and Rhee, S.W.: Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chem. Commun. 48, 5256 (2012).
33.Dan, Q., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., Haddad, R.E., Fan, H., and Sun, Z.: Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 5294 (2014).
34.Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., Tan, H., Zhao, Z., Xie, Z., and Sun, Z.: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5, 12272 (2013).
35.Luo, P.G., Sahu, S., Yang, S.T., Sonkar, S.K., Wang, J., Wang, H., LeCroy, G.E., Cao, L., and Sun, Y.P.: Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B 1, 2116 (2013).
36.Cao, L., Yang, S.T., Wang, X., Luo, P.G., Liu, J.H., Sahu, S., and Liu, Y., Sun, Y.P.: Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics 2, 295 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed