Skip to main content Accessibility help

Preparation of core–shell nanostructured black nano-TiO2 by sol–gel method combined with Mg reduction

  • Yuxin Li (a1), Rong Fu (a1), Xiangdong Wang (a1) and Xiaoling Guo (a2)


Black nano-TiO2 samples with core–shell nanostructure were successfully prepared by sol–gel method combined with Mg reduction using butyl titanate as titanium source and calcining at 500°C in air atmosphere and at 400–600°C in nitrogen atmosphere. The prepared black TiO2 samples were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, photoluminescence emission spectra, N2 adsorption–desorption, and ultraviolet–visible spectroscopy. The results show that the black TiO2 exhibits a crystalline core–disordered shell structure composed of disordered surface and oxygen vacancies, and the thickness of the disordered layer is about 2–3 nm. The optical absorption properties of black nano-TiO2 samples have been remarkably enhanced in visible light region. Compared with the white TiO2, the reduced black TiO2 samples exhibit enhanced photocatalytic hydrogen production under the full solar wavelength range of light, and the sample prepared with the Mg and TiO2 ratio of 9:1 calcined at 500 °C has the maximum hydrogen production rate.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
2.Chen, X.B., Shen, S.H., Guo, L.J., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).
3.Yang, Y.J., Zhang, B., Wan, H.Y., and Zhang, G.P.: Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio. J. Mater. Res. 33, 1543 (2018).
4.Pan, Y.C., Shen, Y.S., Jin, Q.J., and Zhu, S.M.: Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 2414 (2018).
5.Wada, N., Yokomizo, Y., Yogi, C., Katayama, M., Tanaka, A., Kojima, K., Inada, Y., and Ozutsumi, K.: Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018).
6.Wen, J.Q., Li, X., Liu, W., Fang, Y.P., Xie, J., and Xu, Y.H.: Review (special issue on photocatalysis): Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).
7.Wu, F.J., Li, X., Liu, W., and Zhang, S.T.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).
8.Manju, J. and Jawhar, S.M.J.: Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. J. Mater. Res. 33, 1534 (2018).
9.Zhou, Y., Liu, Y.C., Liu, P.W., Zhang, W.Y., Xing, M.Y., and Zhang, J.L.: A facile approach to further improve the substitution of nitrogen into reduced TiO2−x with an enhanced photocatalytic activity. Appl. Catal., B 170, 66 (2015).
10.Zhang, K., Wang, X.D., He, T.O., Guo, X.L., and Feng, Y.M.: Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2. Powder Technol. 253, 608 (2014).
11.Zhang, H., Zhang, J.L., Sun, R.J., and Zhou, Y.X.: Preparation of magnetic and photocatalytic cenosphere deposited with Fe3O4/SiO2/Eu-doped TiO2 core/shell nanoparticles. J. Mater. Res. 30, 3700 (2015).
12.Zhao, Z.Y., Feng, M.C., Peng, Z.J., Huang, H.W., Guo, Z.H., and Li, Z.H.: Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation. J. Mater. Res. 33, 1411 (2018).
13.Liu, B., Chen, H.M., Liu, C., Andrews, S.C., Hahn, C., and Yang, P.: Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 135, 9995 (2013).
14.Dahlman, C.J., Tan, Y., Milliron, D.J., and Marcus, A.: Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 137, 9160 (2015).
15.Liu, M.H., Hou, Y.C., and Qu, X.F.: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).
16.Li, F., Han, T.H., Wang, H.G., Zheng, X.M., Wan, J.M., and Ni, B.K.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).
17.Zhang, K., Wang, X.D., Guo, X.L., He, T.O., and Feng, Y.M.: Preparation of highly visible light active Fe–N co-doped mesoporous TiO2 photocatalyst by fast sol–gel method. J. Nanopart. Res. 16, 2246 (2014).
18.Qi, K.Z., Cheng, B., Yu, J.G., and Ho, W.K.: Black TiO2 (B)/anatase bicrystalline TiO2−x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 38, 1936 (2017).
19.Chen, X.B., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).
20.Yang, Y., Kao, L.C., Liu, Y.Y., Sun, K., Yu, H.T., Guo, J.H., Liou, S.Y.H., and Hoffmann, M.R.: Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal. 8, 4278 (2018).
21.Song, H., Li, C.X., Lou, Z.R., Ye, Z.Z., and Zhu, L.P.: Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustainable Chem. Eng. 5, 8982 (2017).
22.Jiang, J.J., Xing, Z.P., Li, M., Li, Z.Z., Wu, X.Y., Hu, M.P., Wan, J.F., Wang, N., Besov, A.S., and Zhou, W.: In situ Ti3+/N-codoped three-dimensional (3D) urchinlike black TiO2 architectures as efficient visible-light-driven photocatalysts. Ind. Eng. Chem. Res. 56, 7948 (2017).
23.Zhang, X.C., Hu, W.Y., Zhang, K.F., Wang, J.N., Sun, B.J., Li, H.Z., Qiao, P.Z., Wang, L., and Zhou, W.: Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts. ACS Sustainable Chem. Eng. 5, 6894 (2017).
24.Zhang, K. and Park, J.H.: Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. J. Phys. Chem. Lett. 8, 199 (2017).
25.Chen, X.B., Li, C., Gratzel, M., Kostecki, R., and Mao, S.S.: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909 (2012).
26.Li, X., Yu, J.G., Low, J.X., Fang, Y.P., Xiao, J., and Chen, X.B.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).
27.Li, L., Song, L., Zhu, L.F., Yan, Z., and Cao, X.B.: Black TiO2−x with stable surface oxygen vacancies as the support of efficient gold catalysts for water–gas shift reaction. Catal. Sci. Technol. 8, 1277 (2018).
28.Liu, X.H., Hou, B.F., Wang, G., Cui, Z.Q., Zhu, X., and Wang, X.B.: Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 33, 674 (2018).
29.Li, L.C., Shi, K.Z., Tu, R., Qian, Q., Li, D., Yang, Z.H., and Lu, X.H.: Black TiO2 (B)/anatase bicrystalline TiO2−x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 11, 1943 (2015).
30.Chen, X.B., Liu, L., and Huang, F.Q.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).
31.Liu, Y., Su, D., Zhang, Y.Z., Wang, L.L., Yang, G., Shen, F., Deng, S.H., Zhang, X.H., and Zhang, S.R.: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).
32.Zhou, W., Li, W., Wang, J.Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K., Wang, L., Fu, H., and Zhao, D.: Order mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280 (2014).
33.Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).
34.Zhu, G., Shan, Y., Lin, T., Zhao, W., Xu, J., Tian, Z., Zhang, H., Zheng, C., and Huang, F.: Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8, 4705 (2016).
35.Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.J., Song, Y., and Sun, Z.: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755 (2014).
36.Tan, H.Q., Zhao, Z., Niu, M., and Mao, C.Y.: A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6, 10216 (2014).
37.Ramesh, M., Rao, M.P.C., Anandan, S., and Nagaraja, H.: Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 33, 601 (2018).
38.Wang, Z., Yang, C.Y., Lin, T.Q., and Yin, H.: Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007 (2013).
39.Chen, B., Beach, J.A., Maurya, D., and Moore, R.B.: Fabrication of black hierarchical TiO2 nanostructures with enhanced photocatalytic activity. RSC Adv. 4, 29443 (2014).
40.Cui, H.L., Zhao, W., Yang, C.Y., and Yin, H.: Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A 2, 8612 (2014).
41.Hu, M.Q., Cao, Y., Li, Z.Z., Yang, S.L., and Xing, Z.P.: Ti3+ self-doped mesoporous black TiO2/SiO2 nanocomposite as remarkable visible light photocatalyst. Appl. Surf. Sci. 426, 734 (2017).
42.Barman, A., Saini, C.P., Sarkar, P.K., Roy, A., Satpati, B., Kanjilal, D., Ghosh, S.K., Dhar, S., and Kanjilal, A.: Probing electron density across Ar+ irradiation-induced self-organized TiO2−x nanochannels for memory application. Appl. Phys. Lett. 108, 244104 (2016).
43.Liu, Y., Tian, L.H., Tan, X.Y., Li, X., and Chen, X.B.: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).
44.Xia, T. and Chen, X.B.: Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 1, 2983 (2013).
45.Li, K.X., Xu, J.L., Yan, X.D., Liu, L., Chen, X.B., Luo, Y.S., He, J., and Shen, D.Z.: The origin of the strong microwave absorption in black TiO2. Appl. Phys. Lett. 108, 183102 (2016).
46.Sinhamahapatra, A., Jeon, J.P., and Yu, J.S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015).
47.Kumar, C.A.V., Rajadurai, J.S., and Sundararajan, S.: Performance enrichment on tribological characteristics of powder metallurgy processed aluminium particulate composites by inclusion of rutile (TiO2). J. Mater. Res. 31, 2445 (2016).
48.Xia, T., Li, N., Zhang, Y.L., Kruger, M.B., Murowchick, J., Selloni, A., and Chen, X.B.: Directional heat dissipation across the interface in Anatase–Rutile nanocomposites. ACS Appl. Mater. Interfaces 5, 9883 (2013).
49.Wang, X.D., Fu, R., Yin, Q.Q., Wu, H., Guo, X.L., Xu, R.H., and Zhong, Q.Y.: Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity. J. Nanopart. Res. 20, 89 (2018).
50.Green, M.A., Xu, J.L., Liu, H.L., Zhao, J.Y., Li, K.X., Liu, L., Qin, H., Zhu, Y.M., Shen, D.Z., and Chen, X.B.: Terahertz absorption of hydrogenated TiO2 nanoparticles. Mater. Today Phys. 4, 64 (2018).
51.Xia, T., Zhang, C., Oyler, N.A., and Chen, X.B.: Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905 (2013).
52.Riaz, A., Qi, H.J.Y., Fang, Y., Xu, J.F., Zhou, C.M., Jin, Z.G., Hong, Z.L., Zhi, M.J., and Liu, Y.: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).
53.Yan, Y., Chen, T.R., Zou, Y.C., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).


Preparation of core–shell nanostructured black nano-TiO2 by sol–gel method combined with Mg reduction

  • Yuxin Li (a1), Rong Fu (a1), Xiangdong Wang (a1) and Xiaoling Guo (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed