Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T11:08:59.093Z Has data issue: false hasContentIssue false

Preparation and characterization of nanosized zirconium (hydrous) oxide particles

Published online by Cambridge University Press:  31 January 2011

Luis A. Pérez-Maqueda
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699–5814
Egon Matijević*
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699–5814
*
b)Author to whom correspondence should be addressed.
Get access

Abstract

A method for the preparation of nanosized zirconium (hydrous) oxide particles of narrow size distribution is described. The procedure yields stable dispersions at low temperatures and short reaction times in the absence of surfactants, using inorganic zirconium salts. Crystal structure, particle size distribution, electrokinetic properties, stability, and thermal behavior of the prepared particles were investigated. Colloidal dispersions were treated with ultrasound to study their effect on the crystal structure of the calcined samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clough, D. J., Ceram. Eng. Sci. Proc. 6, 1244 (1995).CrossRefGoogle Scholar
2.Hafenmuller, P. and Van Gool, W., Solid Electrolytes (Academic Press, New York, 1978).Google Scholar
3.Blesa, M. A., Maroto, A. J. G., Passaggio, S. I., Figliolia, N. E., and Rigotti, G., J. Mater. Sci. 20, 4601 (1985).CrossRefGoogle Scholar
4.Lerot, L., Legrand, F., and Bruycker, P., J. Mater. Sci. 26, 2353 (1991).CrossRefGoogle Scholar
5.Yoldas, B. E., J. Mater. Sci. 21, 1080 (1986).CrossRefGoogle Scholar
6.Ocaña, M., Fornes, V., and Serna, C. J., Ceram. Int. 18, 99 (1992).CrossRefGoogle Scholar
7.Yoshioka, T., Dosaka, K., Sato, T., Okuwaki, A., Tanno, S., and Miura, T., J. Mater. Sci. Lett. 11, 51 (1992).CrossRefGoogle Scholar
8.Yue-Xiang, H. and Cun-Ji, G., Powder Technol. 72, 101 (1992).Google Scholar
9.Aiken, B., Hsu, W. P., and Matijević, E., J. Mater. Sci. 25, 1886 (1990).CrossRefGoogle Scholar
10.Ardizzone, S., Cattania, M. G., Lazzari, P., and Lugo, P., Colloids Surf. 90, 45 (1994).CrossRefGoogle Scholar
11.Komarneni, S., Roy, R., Breval, E., Ollinen, M., and Suwa, Y., Adv. Ceram. Mater. 1, 87 (1986).Google Scholar
12.Morgan, P. E. D., J. Am. Ceram. Soc. 69, C204 (1984).Google Scholar
13.Tani, E., Yoshimura, M., and Sōmiya, S., J. Am. Ceram. Soc. 66, 11 (1983).Google Scholar
14.Dudeney, A. W. L., Abdel-Ghani, M., Kelsall, G. H., Monhemius, A. J., and Zhang, L., Powder Technol. 65, 207 (1991).CrossRefGoogle Scholar
15.Moon, Y. T., Kim, D. K., and Kim, C. H., J. Am. Ceram. Soc. 78, 1103 (1995).CrossRefGoogle Scholar
16.Provencher, S. W., Comput. Phys. Commun. 27, 215 (1982).Google Scholar
17.Scherrer, P., Gött. Nachr. 2, 98 (1918).Google Scholar
18.Rasmussen, M. D., Jordan, G. W., Akinc, M.. Hunter, O., Jr., and Berard, M. F., Ceram. Int. 9, 59 (1983).CrossRefGoogle Scholar
19.Avila, D. M. and Muccillo, E. N. S., Thermochim. Acta 256, 391 (1995).CrossRefGoogle Scholar
20.Tewari, P. H. and Lee, W., J. Colloid Interface Sci. 52, 77 (1975).Google Scholar
21.Ardizzone, S., Bassi, G., and Liborio, G., Colloids Surf. 51, 207 (1990).Google Scholar
22.Ajay, G. and Matijević, E., J. Colloid. Interface Sci. 126, 243 (1988).Google Scholar
23.Regazzoni, A. E., Blesa, M. A., and Maroto, A. J. G., J. Colloid Interface Sci. 91, 560 (1983).Google Scholar
24.Smith, G. W. and Salmon, T., Can. Metall. Q. 5, 93 (1966).Google Scholar
25.Amphlett, G. B., McDonald, L. A., and Redman, M. J., J. Inorg. Nucl. Chem. 6, 263 (1958).Google Scholar
26.Schultz, M., Grimm, St., and Buckhardt, , Solid State Ionics 63–65, 18 (1993).CrossRefGoogle Scholar
27.Parks, G., Chem. Rev. 65, 177 (1965).Google Scholar
28.Matijević, E. and Kerker, M., J. Phys. Chem. 62, 62 (1958).CrossRefGoogle Scholar
29.Koliadima, A., Pérez-Maqueda, L. A., and Matijević, E., Langmuir 13, 3733 (1997).CrossRefGoogle Scholar
30.Gimblett, G., Rahman, A. A., and Sing, K. S. W., J. Chem. Tech. Biotech. 30, 51 (1980).CrossRefGoogle Scholar
31.Crucean, E. and Rand, B., Trans. J. Brit. Ceram. Soc. 78, 58 (1979).Google Scholar
32.Benedetti, A., Fagherazzi, G., Pinna, F., and Polizzi, S., J. Mater. Sci. 25, 1473 (1990).Google Scholar
33.Štefanić, G., Popović, S., and Musić, S., Thermochim. Acta 259, 225 (1995).Google Scholar
34.Phillipy, C. M. and Mazdiyasni, K. S., J. Am. Ceram. Soc. 54, 254 (1971).Google Scholar
35.Suslick, K. S., MRS Bull. 74, 29 (1995).Google Scholar
36.Delgado, A. and Matijević, E., Part. Part. Syst. Charact. 8, 128 (1991).CrossRefGoogle Scholar
37.Srinivasan, R., Shirgaonkar, I. Z., and Pandit, A. B., Sep. Sci. Technol. 30, 2239 (1995).Google Scholar
38.Mitsuhashi, T., Ichihara, M., and Tatsuke, U., J. Am. Ceram. Soc. 57, 97 (1974).Google Scholar