Skip to main content Accessibility help
×
Home

Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity

  • Li Peng (a1), Zi-wei Li (a1), Ren-rong Zheng (a1), Hui Yu (a1) and Xiang-ting Dong (a1)...

Abstract

Composite materials include various components with different structures, which cooperatively increase their properties and extend their application. In this study, the graphitic carbon nitride (g-C3N4) guest material was assembled into the porous of the SiO2 aerogel, which was prepared during the gel process. By this way, the g-C3N4 could be absolutely encapsulated into the porous of the disordered porous SiO2 aerogel. The prepared g-C3N4/SiO2 composite had a loose porous structure and exhibited the much higher photocatalytic activity to the photodegradation of rhodamine B (RhB) under visible light. The disordered porous structure enhanced photocatalytic activity, and the degradation rate reached to 96.42% in 90 min under the irradiation of visible light, which could be attributed to its high surface area and effective electron–hole separation rate. The catalyst had the much higher stability and could be easily recycled utilization. The prepared composites could be applied to degrade organic pollutants in wastewater.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: yh2001101@163.com

References

Hide All
1.Li, W. and Zhao, D.Y.: An overview of the synthesis of ordered mesoporous materials. Chem. Commun. 49, 943 (2013).
2.Maraumoto, A., Misran, H., and Tsutsumi, K.: Adsorption characteristics of organosilica based mesoporous materials. Langmuir 20, 7139 (2004).
3.Zhao, C.X., Liu, Q., Chen, W., Gao, T., and Xu, L.F.: Synthesis and photoluminescence of Eu(DBM)3phen/APTES-SBA-15 with morphology of pearl-like chains. Trans. Nonferrous Met. Soc. China 16, 356 (2006).
4.Araujo, A.S. and Jaroniec, M.: Thermogravimetric monitoring of the MCM-41 synthesis. Thermochim. Acta 361, 175 (2000).
5.Yu, H., Xia, L., and Zhao, X.L.: Synthesis of particular symmetrical mesoporous silicon dioxide sphere. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 45, 1266 (2015).
6.Lee, M.H., Deka, J.R., Cheng, C.J., Lu, N.F., Saikia, D., Yang, Y.C., and Kao, H.M.: Synthesis of highly dispersed ultra-small nanoparticles within the cage-type mesopores of 3D cubic mesoporous silica via double agent reduction method for catalytic hydrogen generation. Appl. Surf. Sci. 243, 764 (2019).
7.Zhao, X.S., Lu, G.Q., and Millar, G.J.: Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 35, 2075 (1996).
8.Yang, Y.N., Xia, L., Zhang, T., Shi, B., Huang, L.N., Zhong, B., Zhang, X.Y., Wang, H.T., Zhang, J., and Wen, G.W.: Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 352, 510 (2018).
9.Xia, L., Zhang, X.Y., Yang, Y.N., Zhang, J., Zhong, B., Zhang, T., and Wang, H.T.: Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithium–aluminum–silicate (LAS) composites. J. Alloys Compd. 748, 154 (2018).
10.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
11.Chen, D., Xu, J., Xie, Z., and Shen, G.Z.: Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 3, 2112 (2011).
12.Zhen, L., Sheng, J.Y., Zhang, Y.H., Li, X.J., and Xu, Y.M.: Role of CeO2 as oxygen promoter in the accelerated photocatalytic degradation of phenol over rutile TiO2. Appl. Catal., B 166–167, 313 (2015).
13.Ribeirinha, P., Mateos-Pedrero, C., Boaventura, M., Sousa, J., and Mendes, A.: CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: Synthesis, characterization and kinetic model. Appl. Catal., B 221, 371 (2018).
14.Kamat, P.V.: TiO2 nanostructures: Recent physical chemistry advances. J. Phys. Chem. C 116, 11849 (2012).
15.Liu, Y., Yu, L., Hu, Y., Guo, C.F., Zhang, F.M., and Lou, X.W.: A magnetically separable photocatalyst based on nest-like γ-Fe₂O₃/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4, 183 (2012).
16.Ferreira, T.L.B., Garcia, L.M.P., Gurgel, G.H.M., Nascimento, R.M., Godinho, M.J., Bomio, M.R.D., Motta, F.V., and Rodrigues, M.H.M.J.: Effects of MnO2/In2O3 thin films on photocatalytic degradation 17 alpha-ethynylestradiol and methylene blue in water. J. Mater. Sci.: Mater. Electron. 29, 12278 (2018).
17.Felipe, L.D.S., Laitinen, T., Pirilä, M., Keiski, R.L., and Ojala, S.: Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3, and Ga2O3 catalysts. Top. Catal. 60, 1345 (2017).
18.Li, X., Yu, J.G., Jaroniec, M., and Chen, X.B.: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).
19.Li, X., Yu, J.G., and Jaroniec, M.: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).
20.Li, X., Xie, J., Jiang, C.J., Yu, J.G., and Zhang, P.Y.: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).
21.Shen, R.C., Jiang, C.J., Xiang, Q.J., Xie, J., and Li, X.: Surface and interface engineering of hierarchical photocatalysts. Appl. Surf. Sci. 471, 43 (2019).
22.Challagulla, S. and Roy, S.: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 14, 2764 (2017).
23.Gao, M., Zhu, L., Ong, W.L., Wang, J., and Ho, G.W.: Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catal. Sci. Technol. 5, 4703 (2015).
24.Liu, H.R., Hu, C.J., Zhai, H.F., Yang, J.E., Liu, X.G., and Jia, H.S.: Fabrication of In2O3/ZnO@Ag nanowire ternary composites with enhanced visible light photocatalytic activity. RSC Adv. 7, 37220 (2017).
25.Rashid, J., Barakat, M.A., Salah, N., and Habib, S.S.: Ag/ZnO nanoparticles thin films as visible light photocatalysts. RSC Adv. 4, 56892 (2014).
26.You, H.J., Liu, R., Liang, C.C., Yang, S.C., Wang, F., Lu, X.G., and Ding, B.J.: Gold nanoparticle doped hollow SnO2 supersymmetric nanostructures for improved photocatalysis. J. Mater. Chem. A 1, 4097 (2013).
27.Wu, W., Zhang, S.F., Ren, F., Xiao, X.H., Zhou, J., and Jiang, C.Z.: Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core–shell heterostructures: Formation mechanism, and enhanced photocatalytic activity. Nanoscale 3, 4676 (2011).
28.Wang, J., Zhang, N., Su, J.Z., and Guo, L.J.: α-Fe2O3 quantum dots: Low-cost synthesis and photocatalytic oxygen evolution capabilities. RSC Adv. 6, 41060 (2016).
29.Zhang, R.Y., Wan, W.C., Li, D.W., Dong, F., and Zhou, Y.: Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chin. J. Catal. 38, 313 (2017).
30.Mahzoon, S., Nowee, S.M., and Haghighi, M.: Synergetic combination of 1D–2D g-C3N4 heterojunction nanophotocatalyst for hydrogen production via water splitting under visible light irradiation. Renewable Energy 127, 433 (2018).
31.Feng, Z., Zeng, L., Chen, Y.J., Ma, Y.Y., Zhao, C.R., Jin, R.S., and Lu, Y.: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).
32.Fu, S.R., He, Y.M., Wu, Q., Wu, Y., and Wu, T.H.: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of rhodamine B. J. Mater. Res. 31, 2252 (2016).
33.Wang, M., Fang, M.H., Tang, C., Zhang, L.N., Huang, Z.H., Liu, Y.G., and Wu, X.W.: A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).
34.Wen, J.Q., Xie, J., Chen, X.B., and Li, X.: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).
35.Yu, T.T., Liu, L.F., and Yang, F.L.: Heterojunction between anodic TiO2/g-C3N4 and cathodic WO3/W nano-catalysts for coupled pollutant removal in a self-biased system. Chin. J. Catal. 38, 270 (2017).
36.Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).
37.Wang, S.P., Li, C., Wang, T., Zhang, P., Li, A., and Gong, J.: Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2, 2885 (2014).
38.Han, C.C., Ge, L., Chen, C.F., Li, Y.J., Xiao, X.L., Zhang, Y.N., and Guo, L.L.: Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal., B 147, 546 (2014).
39.Yin, S.M., Han, J.Y., Zhou, T.H., and Xu, R.: Recent progress in g-C3N4 based low cost photocatalytic system: Activity enhancement and emerging applications. Catal. Sci. Technol. 15, 5048 (2015).
40.Akple, M.S., Low, J.X., Wageh, S., and Yu, J.G.: Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196 (2015).
41.Liu, S.L. and Chen, J.L.: Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication. J. Mater. Res. 10, 1391 (2018).
42.Naseri, A., Samadi, M., Pourjavadi, A., Moshfegh, A.Z., and Ramakrishna, S.: Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A 5, 23406 (2017).
43.Cui, Z.M., Yang, H., and Zhao, X.X.: Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction nanocomposites. Mater. Sci. Eng., B 229, 160 (2018).
44.Ye, Y.C., Yang, H., Wang, X.X., and Feng, W.J.: Photocatalytic, fenton and photo-fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater. Sci. Semicond. Process. 82, 14 (2018).
45.Kong, L.G., Dong, Y.M., Jiang, P.P., Wang, G.L., Zhang, H.Z., and Zhao, N.: Light-assisted rapid preparation of Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water. J. Mater. Chem. A 4, 9998 (2016).
46.Wang, X.X., Wang, S.S., Hu, W.D., Cai, J., Zhang, L.H., Dong, L.H., Zhao, L.H., and He, Y.M.: Synthesis and photocatalytic activity of SiO2/g-C3N4 composite photocatalyst. Mater. Lett. 115, 53 (2014).
47.Shiraishi, Y., Kanazawa, S., and Sugano, Y.: Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4, 774 (2014).
48.Li, Y., Zhang, H., and Liu, P.: Cross-Linked g-C3N4/rGo nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9, 3336 (2013).
49.Wang, F.L., Feng, Y.P., Chen, P., Wang, Y.F., Su, Y.H., Zhang, Q.X., Zeng, Y.Q., Xie, Z.J., Liu, H.J., Liu, Y., Lv, W.Y., and Liu, G.G.: Photocatalytic degradation of fluroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Appl. Catal., B 227, 114 (2018).
50.Sun, L.M., Qi, Y., Jia, C.J., Jin, Z., and Fan, W.L.: Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 6, 2649 (2014).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed