Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T14:34:37.364Z Has data issue: false hasContentIssue false

Predicting the spreading kinetics of high-temperature liquids on solid surfaces

Published online by Cambridge University Press:  31 January 2011

Douglas A. Weirauch Jr
Affiliation:
Alcoa Technical Center, 100 Technical Drive, Alcoa Center, Pennsylvania 15069
Get access

Abstract

The rate of movement of liquid drops toward their equilibrium position on smooth, horizontal solid surfaces (spreading kinetics) is considered in this study. A model for nonreactive liquid spreading which was developed for low-temperature liquids is applied to results for a set of high-temperature liquids and room-temperature liquids. These data were generated in a single laboratory following a consistent experimental methodology. The liquid-solid pairs were chosen to result in weak or no interfacial chemical reaction. Furnace atmospheres were chosen to provide data for liquid metals with submonolayer, thin or thick oxide films. Analysis of the high-temperature spreading kinetics for liquids covering a broad range of viscosity, surface tension, and density shows that they can be predicted with a constant shift factor applied to the deGennes expression for nonreactive spreading. The consequences of gravitational and inertial forces, substrate roughness, weak interfacial reactions, and liquid-metal oxide films are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.deGennes, P. G., Rev. Mod. Phys. 57 (3), Part 1, 827863 (1985).CrossRefGoogle Scholar
2.Ambrose, J. C., Nicholas, M. G., and Stoneham, A. M., Acta Metall. Mater. 41 (8), 23952401 (1993).CrossRefGoogle Scholar
3.Weirauch, D. A., Jr., Phys. Chem. Glasses 35 (6), 219225 (1994).Google Scholar
4.Ownby, P. Darrell, Weirauch, D. A., Jr., and Lazaroff, J. E., Conference on High Temperature Capillarity, Bratislava, Slovakia, May 9–12, 1994, pp. 330334.Google Scholar
5.Tanner, L. H., J. Phys. D: Appl. Phys. 12, 14731485 (1979).CrossRefGoogle Scholar
6.Marmur, A., Adv. Colloid Surf. Sci. (Elsevier Science Publishers, Amsterdam, 1983), Vol. 19, pp. 75102.Google Scholar
7.Hoffman, R. L., J. Colloid Inter. Sci. 50 (2), 228241 (1975).CrossRefGoogle Scholar
8.Yost, F. G., Hosking, F. M., and Frear, D. R., in The Mechanics of Solder Alloy Wetting and Spreading (Van Nostrand Reinhold, New York, 1993), Chap. 1, pp. 17.Google Scholar
9.Weirauch, D. A., Jr., Balaba, W. M., and Perotta, A. J., 1995, J. Mater. Res. 10, 640650 (1995).CrossRefGoogle Scholar
10.Ownby, P. D., Li, K-W., and Weirauch, D. A., Jr., J. Am. Ceram. Soc. 74 (6), 12751281 (1991).CrossRefGoogle Scholar
11.Smithells Metals Reference Book, 2nd ed., edited by Brandes, E. A. and Brook, G. B. (Butterworth-Heinemann, Ltd., Oxford, 1992).Google Scholar
12.Dussan, E. B.V. Ann. Rev. Fluid Mech. 11, 371400 (1979).CrossRefGoogle Scholar
13.Extrand, C. W., J. Colloid Interf. Sci. 157, 7276 (1993).CrossRefGoogle Scholar
14.Ambrose, J. C., Nicholas, M. G., and Stoneham, A. M., Acta Metall. Mater. 40 (10), 24832488 (1992).CrossRefGoogle Scholar
15.Laurent, V., Rado, C., and Eustathopoulos, N., Mater. Sci. Eng. A205, 18 (1996).CrossRefGoogle Scholar
16.Bardal, A., Nord-Varhaug, K., Ulvensoen, J. H., and Skybakmoen, E., Proc. 1st Int. Conf. High-Temperature Capillarity, edited by Eustathopoulos, N., Bratislava, Slovakia (1994).Google Scholar
17.Naidich, Yu.V., Perevertailo, V. M., and Nevodnik, G. M., Poroshkovaya Metallurgiya, No. 7(117); 51–55 (1972).Google Scholar
18.Hitchcock, S. J., Carroll, N. T., and Nicholas, M. G., J. Mater. Sci. 16, 714732 (1981).CrossRefGoogle Scholar
19.deGennes, P. G., Hua, X., and Levinson, P., J. Fluid Mech. 212, 5563 (1990).Google Scholar
20.Ramé, E. and Garoff, S., J. Colloid Surf. Sci. 177, 234244 (1996).CrossRefGoogle Scholar
21.Nicholas, M. and Poole, D. M., J. Mater. Sci. 2, 269274 (1967).CrossRefGoogle Scholar
22.Landry, K. and Eustathopoulos, N., Acta. Mater. 44 (6), 3923–2932 (1996).CrossRefGoogle Scholar