Skip to main content Accessibility help

Precipitation kinetics of M23C6 in T/P92 heat-resistant steel by applying soft-impingement correction

  • Linqing Xu (a1), Dantian Zhang (a1), Yongchang Liu (a1), Baoqun Ning (a2), Zhixia Qiao (a3), Zesheng Yan (a4) and Huijun Li (a4)...


A kinetics model for the precipitation of M23C6 in high Cr ferritic heat resistant steel during tempering has been developed assuming the site-saturated nucleation, carbon diffusion-controlled growth and soft-impingement. The growth coefficient in this model is temperature-dependent, and the Arrhenius equation is applied to describe the growth coefficient, in which the growth activation energy is nearly equal to the diffusion activation energy of carbon in martensite. The effect of main parameters in this model has been discussed in detail. By this model, the precipitation of M23C6 during tempering can be predicted accurately in the case of 2D, and a good agreement with experimental data in previous work has been achieved.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Abe, F.: Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater. 9(1), 013002 (2008).
2.Ning, B., Shi, Q., Yan, Z., Fu, J., Liu, Y., and Bie, L.: Variation of martensite phase transformation mechanism in minor-stressed T91 ferritic steel. J. Nucl. Mater. 393(1), 54 (2009).
3.Singhal, L. and Martin, J.: The nucleation and growth of widmannstätten m23c6 precipitation in an austenitic stainless steel. Acta Metall. 16(9), 1159 (1968).
4.Taneike, M., Sawada, K., and Abe, F.: Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment. Metall. Mater. Trans. A 35(4), 1255 (2004).
5.Abe, F., Taneike, M., and Sawada, K.: Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int. J. Press. Vessels Pip. 84(1), 3 (2007).
6.Liu, F., Sommer, F., and Mittemeijer, E.: An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39(5), 1621 (2004).
7.Liu, F., Nitsche, H., Sommer, F., and Mittemeijer, E.: Nucleation, growth and impingement modes deduced from isothermally and isochronally conducted phase transformations: Calorimetric analysis of the crystallization of amorphous Zr50Al10Ni40. Acta Mater. 58(19), 6542 (2010).
8.Ruitenberg, G., Woldt, E., and Petford-Long, A.: Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim. Acta 378(1), 97 (2001).
9.Starink, M. and Zahra, A.M.: β′ and β precipitation in an Al–Mg alloy studied by DSC and TEM. Acta Mater. 46(10), 3381 (1998).
10.Robson, J. and Bhadeshia, H.: Kinetics of precipitation in power plant steels. Calphad 20(4), 447 (1996).
11.Robson, J. and Bhadeshia, H.: Modelling precipitation sequences in power plant steels part 1–kinetic theory. Mater. Sci. Technol. 13(8), 631 (1997).
12.Liu, F., Sommer, F., Bos, C., and Mittemeijer, E.: Analysis of solid-state phase transformation kinetics: Models and recipes. Int. Mater. Rev. 52(4), 193 (2007).
13.Offerman, S., Van Dijk, N., Sietsma, J., Lauridsen, E., Margulies, L., Grigull, S., Poulsen, H., and Van Der Zwaag, S.: Solid-state phase transformations involving solute partitioning: Modeling and measuring on the level of individual grains. Acta Mater. 52(16), 4757 (2004).
14.Chen, H. and van der Zwaag, S.: Modeling of soft impingement effect during solid-state partitioning phase transformations in binary alloys. J. Mater. Sci. 46(5), 1328 (2011).
15.Gilmour, J., Purdy, G., and Kirkaldy, J.: Thermodynamics controlling the proeutectoid ferrite transformations in Fe-C-Mn alloys. Metall. Mater. Trans. B 3(6), 1455 (1972).
16.Gilmour, J., Purdy, G., and Kirkaldy, J.: Partition of manganese during the proeutectoid ferrite transformation in steel. Metall. Mater. Trans. B 3(12), 3213 (1972).
17.Bhadeshia, H.K.D.H.: Diffusional formation of ferrite in iron and its alloys. Prog. Mater. Sci. 29, 321 (1986).
18.Andres, C.G., Capdevila, C., Caballero, F., and Bhadeshia, H.: Modelling of isothermal ferrite formation using an analytical treatment of soft impingement in 0.37 C-1.45 Mn-0.11 V microalloyed steel. Scr. Mater. 39(7), 853 (1998).
19.Yu, G., Lai, Y., and Zhang, W.: Kinetics of transformation with nucleation and growth mechanism: Diffusion-controlled reactions. J. Appl. Phys. 82(9), 4270 (1997).
20.Fan, K., Liu, F., Liu, X., Zhang, Y., Yang, G., and Zhou, Y.: Modeling of isothermal solid-state precipitation using an analytical treatment of soft impingement. Acta Mater. 56(16), 4309 (2008).
21.Zener, C.: Theory of growth of spherical precipitates from solid solution. J. Appl. Phys. 20(10), 950 (1949).
22.Mittemeijer, E.: Analysis of the kinetics of phase transformations. J. Mater. Sci. 27(15), 3977 (1992).
23.Avrami, M.: Kinetics of phase change. I general theory. J. Chem. Phys. 7, 1103 (1939).
24.Avrami, M.: Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).
25.Avrami, M.: Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9, 177 (1941).
26.Chen, H. and van der Zwaag, S.: Indirect evidence for the existence of the Mn partitioning spike during the austenite to ferrite transformation. Philos. Mag. Lett. 92(2), 86 (2012).
27.Chen, H., Appolaire, B., and van der Zwaag, S.: Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling. Acta Mater. 59(17), 6751 (2011).
28.Chen, H. and van der Zwaag, S.: Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages. Acta Mater. 61(4), 1338 (2012).
29.Wert, C. and Zener, C.: Interference of growing spherical precipitate particles. J. Appl. Phys. 21(1), 5 (1950).
30.Smithells, C.J.: Metals Reference Book, 6th ed. edited by Brandes, E.A. (Butterworths, London, 1983). p. 15.
31.Chester, N. and Bhadeshia, H.: Mathematical modelling of bainite transformation kinetics. Le Journal de Physique IV 7(C5), 5 (1997).
32.Abe, F., Horiuchi, T., Taneike, M., and Sawada, K.: Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Mater. Sci. Eng., A 378(1), 299 (2004).
33.Robson, J. and Bhadeshia, H.: Modelling precipitation sequences in powerplant steels part 2–application of kinetic theory. Mater. Sci. Technol. 13(8), 640 (1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed