Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:17:27.353Z Has data issue: false hasContentIssue false

The pore morphology of fluoride catalyzed xerogels

Published online by Cambridge University Press:  31 January 2011

J-B. Chan
Affiliation:
Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801
D-W. Hua
Affiliation:
Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801
R. Winter*
Affiliation:
Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801
J. Jonas
Affiliation:
Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801
*
a)Current address: Philipps-Universitaet, Physikalische Chemie, Hans Meerweinstrasse, D-3550 Marburg/Lahn, West Germany.
Get access

Abstract

The fluoride anion has been shown to be one of the most effective catalysts in accelerating the polycondensation of alkoxide-derived silica gels. A detailed pore analysis study has been employed to investigate the effect of NaF on the pore structure of the resulting xerogels and its evolution during thermal heat treatment up to 800 °C. Addition of NaF to tetramethylorthosilicate-sols leads to an increase in average pore size, and the pore size distribution becomes narrower. By changing the fluoride concentration and the heating temperature, the surface properties of the xerogels can be tuned over a wide range. The possible application of the F anion catalyzed sol gel process to prepare porous host materials for the studies of fluids in restricted geometries is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (Wiley, 1986).Google Scholar
2Dozier, W.D.Drake, J. M. and Klafter, J.Phys. Rev. Lett. 56, 197(1986).CrossRefGoogle Scholar
3Awschalom, D. D.Wamock, J. and Shafer, M. W.Phys. Rev. Lett. 57, 1607(1986).CrossRefGoogle Scholar
4Warnock, J.Awschalom, D.D. and Shafer, M.W.Phys. Rev. B 34, 475(1986).CrossRefGoogle Scholar
5Shafer, M.W.Awschalom, D.D. and Warnock, J.J. Appl. Phys. 61 (12), 5438(1987).CrossRefGoogle Scholar
6Her, R. K.The Chemistry of Silica (Wiley, New York, 1979).Google Scholar
7Pouxviel, J. C.Boilot, J. P.Beloil, J. C. and Lallemand, J. Y.J. Non-Cryst. Solids 89, 345(1987).CrossRefGoogle Scholar
8Artaki, I.Zerda, T. W. and Jonas, J.Mat. Lett. 3, 493(1985).CrossRefGoogle Scholar
9Artaki, I.Zerda, T. W. and Jonas, J.J. Non-Cryst. Solids 81, 381(1986).CrossRefGoogle Scholar
10Zerda, T.W.Artaki, I. and Jonas, J.J. Non-Cryst. Solids 81, 365(1986).CrossRefGoogle Scholar
11Keefer, K.D. in Mat. Res. Soc. Symp. Proc.(1984), Vol. 32, p. 15.CrossRefGoogle Scholar
12Colby, M. W.Osaka, O. and Mackenzie, J. D.J. Non-Cryst. Solids 82, 37(1986).CrossRefGoogle Scholar
13Artaki, I.Sinha, S.Irwin, A. D. and Jonas, J.J. Non-Cryst. Solids 72, 37(1985).CrossRefGoogle Scholar
14A, E. J.. Pope and Mackenzie, J. D.J. Non-Cryst. Solids 87, 185(1986).Google Scholar
15Hench, L.L. in Ref. 1, p. 52.Google Scholar
16Winter, R.Chan, J-B.Frattini, R. and Jonas, J.J. Non-Cryst. Solids 105, 214(1988).CrossRefGoogle Scholar
17Rabinovich, E. M. and Wood, D. L. in Mat. Res. Soc. Symp. Proc.(1986), Vol. 73, p. 251.CrossRefGoogle Scholar
18Shibata, S.Kitagawa, T. and Horiguchi, M.J. Non-Cryst. Solids 100, 269(1988).CrossRefGoogle Scholar
19Shields, J. E. and Lowell, S. Am. Lab., Nov. 1984, p. 81.Google Scholar
20Wallace, S. and Hench, L. L. in Ref. 1, p. 148.Google Scholar
21Scherer, G.W.J. Non-Cryst. Solids 87, 199(1986).CrossRefGoogle Scholar
22Krol, D. M. and van Lierop, J. G., J. Non-Cryst. Solids 63, 131(1984).CrossRefGoogle Scholar
23Nogami, M. and Moriya, Y.J. Non-Cryst. Solids 37, 191(1980).CrossRefGoogle Scholar
24Brinker, C.J.Keefer, K.D.Schaefer, D.W.Assink, R.A.Kay, B.D. and Ashley, C.S.J. Non-Cryst. Solids 63, 45(1984).CrossRefGoogle Scholar
25Krol, D. M. and Rabinovich, E. M.J. Non-Cryst. Solids 82, 143(1986).CrossRefGoogle Scholar
26Nassau, K.Rabinovich, E. M.Miller, A. E. and Gallagher, P. K.J. Non-Cryst. Solids 82, 78(1986).CrossRefGoogle Scholar
27Wood, D.L. and Rabinovich, E.M.J. Non-Cryst. Solids 82, 171(1986).CrossRefGoogle Scholar