Skip to main content Accessibility help

Polyanion modulated evolution of perovskite BiFeO3 microspheres to microcubes by a microwave assisted hydrothermal method

  • Zhi Wang (a1), Wenfei Xu (a1), Hui Peng (a1) and Xiaodong Tang (a1)


In this work, the morphology of BiFeO3 was successfully modulated from microsphere to microcube by using a polyanion, poly (methyl vinyl ether-alt-maleic acid) (PMVEMA), in a microwave assisted hydrothermal route. A simple ultrasonic purification method has been developed to obtain pure phase BiFeO3 from the crude products without using any chemicals. X-ray diffraction results confirmed the capability of this purification method. When increasing the amount of PMVEMA, the morphology of BiFeO3 gradually changed from microsphere to microcube as illustrated by scanning electron microscopy. A mechanism was suggested for the morphology evolution of BiFeO3. After the formation of the small BiFeO3 single crystal, PMVEMA preferentially absorbed on one side of the crystals through specific and/or noncovalent interactions, resulting in the preferential integration of these crystals to form microcubes. The magnetic properties of these microcrystals were also investigated and the magnetization of the microcubes increased with the decrease of temperature.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Dagotto, E.: PHYSICS. When oxides meet face to face. Science 318(5853), 1076 (2007).
2.Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R., and Dynes, R.C.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9(9), 756 (2010).
3.Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38(8), R123 (2005).
4.Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309(5733), 391 (2005).
5.Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759 (2006).
6.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M. and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719 (2003).
7.Smolenskii, G.A. and Chupis, I.: Sov. Phys. Usp. 25, 475 (1982).
8.Palai, R., Katiyar, R.S., Schmid, H., Tissot, P., Clark, S.J., Robertson, J., Redfern, S.A.T., Catalan, G. and Scott, J.F.: β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77(1), 014110 (2008).
9.Lin, Y-H., Jiang, Q., Wang, Y., Nan, C-W., Chen, L., and Yu, J.: Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl. Phys. Lett. 90(17), 172507 (2007).
10.Leontsev, S.O. and Eitel, R.E.: Origin and magnitude of the large piezoelectric response in the lead-free (1–x)BiFeO3–xBaTiO3 solid solution. J. Mater. Res. 26(01), 9 (2011).
11.Yang, M.: Fern-shaped bismuth dendrites electrodeposited at hydrogen evolution potentials. J. Mater. Chem. 21(9), 3119 (2011).
12.Tang, J. and Alivisatos, A.P.: Crystal splitting in the growth of Bi2S3. Nano Lett. 6(12), 2701 (2006).
13.Zhang, X.Y., Lai, C.W., Zhao, X., Wang, D.Y., and Dai, J.Y.: Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett. 87(14), 143102 (2005).
14.Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., and Wong, S.S.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766 (2007).
15.Selbach, S.M., Tybell, T., Einarsrud, M.A., and Grande, T.: Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19(26), 6478 (2007).
16.Chen, C., Cheng, J., Yu, S., Che, L., and Meng, Z.: Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 291(1), 135 (2006).
17.Mi, J.L., Jensen, T.N., Christensen, M., Tyrsted, C., Jorgensen, J.E., and Iversen, B.B.: High-temperature and high-pressure aqueous solution formation, growth, crystal structure, and magnetic properties of BiFeO3 nanocrystals. Chem. Mater. 23(5), 1158 (2011).
18.Li, S., Lin, Y.H., Zhang, B.P., Wang, Y., and Nan, C.W.: Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114(7), 2903 (2010).
19.Fei, L., Yuan, J., Hu, Y., Wu, C., Wang, J., and Wang, Y.: Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets. Cryst. Growth Des. 11(4), 1049 (2011).
20.Joshi, U.A., Jang, J.S., Borse, P.H., and Lee, J.S.: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92(24), 242106 (2008).
21.Zhu, X., Hang, Q., Xing, Z., Yang, Y., Zhu, J., Liu, Z., Ming, N., Zhou, P., Song, Y., Li, Z., Yu, T. and Zou, Z.: Microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic activities of single-crystalline bismuth ferric nanocrystals. J. Am. Ceram. Soc. 94(8), 2688 (2011).
22.Ruan, Q.J. and Zhang, W.D.: Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J. Phys. Chem. C 113(10), 4168 (2009).
23.Zhang, X., Lv, J., Bourgeois, L., Cui, J., Wu, Y., Wang, H., and Webley, P.A.: Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New J. Chem. 35(4), 937 (2011).
24.Bernardo, M.S., Jardiel, T., Peiteado, M., Caballero, A.C., and Villegas, M.: Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J. Eur. Ceram. Soc. 31(16), 3047 (2011).
25.Wang, Z., Zhu, J., Xu, W., Sui, J., Peng, H., and Tang, X.: Microwave hydrothermal synthesis of perovskite BiFeO3 nanoparticles: An insight into the phase purity during the microwave heating process. Mater. Chem. Phys. 135(2–3), 330 (2012).
26.Chen, X-Z., Qiu, Z-C., Zhou, J-P., Zhu, G., Bian, X-B., and Liu, P.: Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method. Mater. Chem. Phys. 126(3), 560 (2011).
27.Chen, J., Xing, X.R., Watson, A., Wang, W., Yu, R.B., Deng, J.X., Yan, L., Sun, C., and Chen, X.B.: Rapid synthesis of multiferroic BiFeO3 single-crystalline nanostructures. Chem. Mater. 19(15), 3598 (2007).
28.Cao, G., Choi, H., Konishi, H., Kou, S., Lakes, R., and Li, X.: Mg–6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J. Mater. Sci. 43(16), 5521 (2008).
29.Gonzalez-Avila, S.R., Prabowo, F., Kumar, A., and Ohl, C-D.: Improved ultrasonic cleaning of membranes with tandem frequency excitation. J. Membr. Sci. 415416(0), 776 (2012).
30.Ashokkumar, F.G.M.: Ultrasound assisted chemical processes. Rev. Chem. Eng. 15, 41 (1999).
31.Suslick, K.S., Choe, S-B., Cichowlas, A.A., and Grinstaff, M.W.: Sonochemical synthesis of amorphous iron. Nature 353(6343), 414 (1991).
32.J.C.O.P.D. Standards: Powder Diffraction File (PDF) (International Centre for Diffraction Data, Newtown Square, DE, 2004).
33.Wang, Y., Xu, G., Yang, L., Ren, Z., Wei, X., Weng, W., Du, P., Shen, G., and Han, G.: Alkali metal ions-assisted controllable synthesis of bismuth ferrites by a hydrothermal method. J. Am. Ceram. Soc. 90(11), 3673 (2007).
34.Tsai, C-J., Yang, C-Y., Liao, Y-C., and Chueh, Y-L.: Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. J. Mater. Chem. 22(34), 17432 (2012).
35.Busch, D.H. and Bailar, J.C.: The stereochemistry of complex inorganic compounds. Xvii. The stereochemistry of hexadentate ethylenediaminetetraacetic acid complexes. J. Am. Chem. Soc. 75(18), 4574 (1953).
36.Nakanishi, K.: Infrared Absorption Spectroscopy (Holden Day, San Francisco, CA, 1977).
37.Rao, G.V.S., Rao, C.N.R., and Ferraro, J.R.: Infrared and electronic spectra of rare earth perovskites: Ortho-chromites, -manganites and -ferrites. Appl. Spectrosc. 24(4), 436 (1970).
38.Kaczmarek, W. and Graja, A.: Lattice dynamics study of the solid solution (Bi1−xLax) FeO3 by i.r. spectroscopy. Solid State Commun. 17(7), 851 (1975).
39.Lebeugle, D., Colson, D., Forget, A., Viret, M., Bonville, P., Marucco, J.F., and Fusil, S.: Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76(2), 024116 (2007).
40.Jaiswal, A., Das, R., Vivekanand, K., Abraham, P.M., Adyanthaya, S., and Poddar, P.: Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114(5), 2108 (2010).
41.Gao, F., Yuan, Y., Wang, K.F., Chen, X.Y., Chen, F., and Liu, J.M.: Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl. Phys. Lett. 89(10), 102506 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed