Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T10:05:18.518Z Has data issue: false hasContentIssue false

Polarized light microstructure analysis of melt-textured DyBa2Cu3O7−x ceramics

Published online by Cambridge University Press:  31 January 2011

P. Diko
Affiliation:
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-04353 Kosice, Slovakia
M. Ausloos
Affiliation:
S.U.P.R.A.S., Institute of Physics, B5, University of Liège, Sart Tilman, B-4000 Liège, Belgium
R. Cloots
Affiliation:
S.U.P.R.A.S., Institute of Chemistry, B6, and S.U.P.R.A.S., Institute of Electricity Montefiore, B28, University of Liège, Sart Tilman, B-4000 Liège, Belgium
Get access

Abstract

We report the microstructure of magnetically melt-textured Dy-123 samples, as observed by polarized light metallography. The phase dimensions, morphology, orientation, nature, and distribution are outlined. Grain, twin structure pattern, and grain boundary are characterized. The relationship among cracking, secondary phases, and tetragonal-orthorhombic phase transformation is discussed. The results are obtained by observing a “not-too-well-ordered” region. This leads to definite conclusions on the relationship between crack spacing and 211 distribution, and to some confirmation of the growth mechanism and on macro- and microcrack origins. From the present observations, the effect of the oxygenation process and the quantification of the tensile stress in the materials can also be obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ekin, J. W., Salama, K., and Selvamanickam, V., Appl. Phys. Lett. 59, 360 (1991).Google Scholar
2.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
3.Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
4.Jin, S., Sherwood, R. C., Gyorgy, E. M., Tiefel, T. H., van Dover, R. B., Nakahara, S., Schneemeyer, L. F., Fastnacht, R. A., and Davis, M. E., Appl. Phys. Lett 54, 584 (1989).CrossRefGoogle Scholar
5.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
6.Goyal, A., Funkenbusch, P.D., Kroeger, D. M., and Burns, S. J., Physica C 182, 203 (1991).Google Scholar
7.Shi, D., Krishnan, H., Hong, J. M., Miller, D., McGinn, P.J., Chen, W. H., Xu, M., Chen, J.G., Fang, M.M., Welp, U., Lanagan, M.T., Goretta, K. C., Dusek, T., Picciolo, J.J., and Balachandran, U., J. Appl. Phys. 66, 228 (1990).Google Scholar
8.Jin, S., Kammlott, G. W., Tiefel, T. H., Kodas, T. T., Ward, T. L., and Kroeger, D. M., Physica C 181, 57 (1991).Google Scholar
9.Yamaguchy, K., Murakami, M., Fujimoto, H., Gotoh, S., Shio-hara, Y., Koshizuka, N., and Tanaka, S., J. Mater. Res. 6, 1404 (1991).CrossRefGoogle Scholar
10.Meng, R. L., Sun, Y. Y., Hor, P.H., and Chu, C.W., Physica C 179, 149 (1991).Google Scholar
11.McGinn, P., Chen, W., Zhu, N., Lanagan, M., and Balachandran, U., Appl. Phys. Lett. 57, 1455 (1990).Google Scholar
12.McGinn, P., Zhu, N., Chen, W., Sengupta, S., and Li, T., Physica C 176, 203 (1991).CrossRefGoogle Scholar
13.Manhart, J. and Tsuei, C. C., Z. Phys. B 77, 53 (1989).CrossRefGoogle Scholar
14.Bateman, Ch.A., Zhang, L., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
15.Spanos, G. and Aaronson, H. I., Scripta Metall. 22, 1537 (1988).CrossRefGoogle Scholar
16.Menon, E.S.K. and Aaronson, H. I., Acta Metall. 35, 549 (1987).CrossRefGoogle Scholar
17.Lee, D. F., Selvamanickam, V., and Salama, K., Physica C 202, 83 (1992).CrossRefGoogle Scholar
18.Lees, M. R., Bourgault, D., Braithwaite, D., de Rango, P., Lejay, P., Sulpice, A., and Tournier, R., Physica C 191, 414 (1992).CrossRefGoogle Scholar
19.Halloway, A., McCallum, R. W., and Arasmith, S. R., J. Mater. Res. 8, 727 (1993).CrossRefGoogle Scholar
20.Hannay, C., Cloots, R., and Ausloos, M., Solid State Commun. 83, 349 (1992).Google Scholar
21.Cloots, R., Rulmont, A., Hannay, C., Godelaine, P. A., Van-derschueren, H. W., Régnier, P., and Ausloos, M., Appl. Phys. Lett. 61, 2718 (1992).Google Scholar
22.Vandewalle, N., Cloots, R., and Ausloos, M., Physica C 235–240, 427 (1994); Philos. Mag. A 72, 727 (1995).CrossRefGoogle Scholar
23.Pekala, M., Cloots, R., Bougrine, H., Maka, E., and Ausloos, M., Z. Phys. B 97, 67 (1995).Google Scholar
24.Godelaine, P. A., Hannay, C., Cloots, R., Vanderschueren, H. W., Tatlock, G. J., McCartney, D. G., and Ausloos, M., Supercond. Sci. Technol. 4, 701 (1991).CrossRefGoogle Scholar
25.Zhang, S. Y., in Handbook of Ceramic and Composites, edited by Cheremisonof, N. P. (Marcel Dekker, New York, 1992), Vol. 2, p. 56.Google Scholar
26.Diko, P., Ye, M., Mehbod, M., Deltour, R., and Sargankov, I., J. Mater. Sci. Eng. B 17, 152 (1993).CrossRefGoogle Scholar
27.Alford, N. McN., Birchal, J. D., Clegg, W. J., Harmer, M. A., Kendal, K., and Jones, D. H., J. Mater. Sci. 23, 761 (1988).Google Scholar