Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T05:32:41.288Z Has data issue: false hasContentIssue false

Polarization reversal and domain anisotropy in flux-grown KTiOPO4 and isomorphic crystals

Published online by Cambridge University Press:  31 January 2011

P. Urenski
Affiliation:
Department of Electrical Engineering—Physical Electronics, Tel Aviv University, Ramat-Aviv, 69978, Israel
G. Rosenman*
Affiliation:
Department of Electrical Engineering—Physical Electronics, Tel Aviv University, Ramat-Aviv, 69978, Israel
M. Molotskii
Affiliation:
School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat-Aviv, 69978, Israel
*
a)Address all correspondence to this author. e-mial: girl@eng.tau.ac.il
Get access

Abstract

Spontaneous polarization reversal and domain structures of flux-grown ferroelectric KTiOPO4 and isomorphic crystals were studied. Two temperature regions with dominant either ionic or electronic conductivity were found. It was shown that in the high-temperature region mobile cations contributed sufficiently to internal screening process. The ionic leakage current was suppressed at a specific temperature point for each studied crystal. High crystallographic asymmetry of domain wall velocity was observed. This shows that the electrode pattern should be properly oriented relative to the crystal axes of KTiOPO4 and its isomorphs for fabrication of periodically poled domain configurations used in nonlinear optical conversions.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Merz, W., Phys. Rev. 95, 690 (1954).CrossRefGoogle Scholar
2.Landauer, R., J. Appl. Phys. 28, 227 (1957).Google Scholar
3.Scott, J.F., Ferroelectrics Review 1, 1 (1998).Google Scholar
4.Rosenman, G., Skliar, A., and Arie, A., Ferroelectrics Review 1, 4 (1999).Google Scholar
5.Miller, R.C. and Savage, A., Phys. Rev. B. 112, 755 (1958).Google Scholar
6.Miller, R.C. and Savage, A., J. Appl. Phys. 31, 662 (1960).Google Scholar
7.Kugel, V.D., Rosenman, G., and Shur, D., J. Appl. Phys. 78, 1165 (1995).CrossRefGoogle Scholar
8.Wurfel, P., Batra, I.P., and Yacobs, J.T., Phys. Rev. Lett. 30, 1218 (1973).Google Scholar
9.Wurfel, P. and Batra, I.P., Phys. Rev. B 8, 5126 (1973).Google Scholar
10.Lin, Y., Zhao, B.R., Peng, H.B., Hao, Z., Xu, B., Zhao, Z.X., and Chen, J.S., J. Appl. Phys. 86, 4667 (1999).Google Scholar
11.Cheng, L.K. and Bierlein, J.D., Ferroelectrics 142, 209 (1993).Google Scholar
12.Bierlein, J.D. and Vanherzeele, H., J. Opt. Soc. Am. B 6, 622 (1989).Google Scholar
13.Stefanovich, S.Yu., Mill, B.V., and Butashin, A.V., Ferroelectrics 144, 237 (1993).Google Scholar
14.Rosenman, G., Skliar, A., Eger, D., Oron, M., and Katz, M., Appl. Phys. Lett. 73, 3650 (1998).Google Scholar
15.Rosenman, G., Skliar, A., Oron, M., and Katz, M., J. Phys. D: Appl. Phys. 30, 277 (1997).Google Scholar
16.Yanovskii, V. and Voronkova, V., Phys. Status Solidi A 93, 665 (1986).Google Scholar
17.Fatuzzo, E. and Merz, W., Ferroelectricity (North Holland, Amsterdam, The Netherlands, 1967).Google Scholar
18.Rosenman, G., Garb, Kh., Skliar, A., Oron, M., Eger, D., and Katz, M., Appl. Phys. Lett. 73, 865 (1998).Google Scholar
19.Hilczer, B. and Michalczyk, M., Ferroelectrics 22, 721 (1978).Google Scholar
20.Kugel, V.D. and Rosenman, G., J. Appl. Phys. 80, 5256 (1996).Google Scholar
21.Urenski, P., Gorbatov, N., and Rosenman, G., J. Appl. Phys. 89, 1850 (2001).Google Scholar
22.Antsigin, V.D., Gusev, V.A., Semenenko, V.N., and Yurkin, A.M., Ferroelectrics 143, 223 (1993).Google Scholar
23.Rosenman, G., Skliar, A., Findling, Y., Urenski, P., Englander, A., Thomas, P., and Zhu, Z., J. Phys. D.: Appl. Phys. 32, L49 (1999).Google Scholar
24.Thomas, P., Glazer, A., and Watts, B., Acta Crystall. B46, 333 (1990).Google Scholar
25.Morris, P.A., Ferretti, A., and Bierlein, J.D., J. Crystal Growth 109, 367 (1991).Google Scholar
26.Gopalan, V., Mitchell, T.E., Furukawa, Y., and Kitamara, K., Appl. Phys. Lett. 72, 1981 (1998).Google Scholar
27.Kitamura, K., Furukawa, Y., Niwa, K., Gopalan, V., and Mitchell, T.E., Appl. Phys. Lett. 73, 3073 (1998).Google Scholar
28.Rosenman, G., Urenski, P., Arie, A., Roth, M., Angert, N., Skliar, A., and Tseitlin, M., Appl. Phys. Lett. 76, 3798 (2000).Google Scholar
29.Rosenman, G., Skliar, A., Lareah, I., Angert, N., Zeitlin, M., and Roth, M., Phys. Rev. B. 54, 6222 (1996).Google Scholar
30.Ivanov, N.R., Tikhomirova, N.A., Grinzberg, A.V., Chumakova, S.P., Eknadiosyants, E.I., Borodin, V.Z., Pinskaya, A.N., Babonskikh, V.A., and Dyakov, V.A., Crystallogr. Rep. 39, 593 (1994).Google Scholar
31.Miller, R.C. and Weinreich, C., Phys. Rev. 117, 1460 (1960).Google Scholar
32.Miller, R., Phys. Rev. 111, 736 (1958).Google Scholar