Skip to main content Accessibility help
×
Home

Plastic zone at crack tip: A nanolab for formation and study of metallic glassy nanostructures

  • X.X. Xia, Wei H. Wang (a1) and A. Lindsay Greer (a2)

Abstract

We report that various metallic glassy nanostructures including nanoridges, nanocones, nanowires, nanospheres, and nanoscale-striped patterns are spontaneously formed on the fracture surface of bulk metallic glasses at room temperature. A clear correlation between the dimensions of these nanostructures and the size of the plastic zone at the crack tip has been found, providing a way to control nanostructure sizes by controlling the plastic zone size intrinsically or extrinsically. This approach to forming metallic glassy nanostructures also has implications for understanding the deformation and fracture mechanisms of metallic glasses.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: whw@aphy.iphy.ac.cn

References

Hide All
1Heath, J.R.: Nanoscale materials. Acc. Chem. Res. 32, 388 (1999).
2Bosbach, J.: Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: Influence of particle size, shape, and chemical surrounding. Phys. Rev. Lett. 89, 257404 (2002).
3Martin, C.R.: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).
4Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A. and EI-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).
5Wang, Y.M., Chen, M.W., Zhou, F.H. and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).
6Suslick, K.S., Choe, S.B., Cichowlas, A.A. and Grinstaff, M.W.: Sonochemical synthesis of amorphous iron. Nature 353, 414 (1991).
7Ikeda, H., Qi, Y., Çagin, T., Samwer, K., Johnson, W.L., and W.A. Goddard III: Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900 (1999).
8Koh, S.J.A., Lee, H.P., Lu, C. and Cheng, Q.H.: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B: Con-dens. Matter 72, 085414 (2005).
9Wang, D.X., Zhao, J.W., Hu, S., Yin, X., Liang, S., Liu, Y.H. and Deng, S.Y.: Where, and how, does a nanowire break? Nano Lett. 7, 1208 (2007).
10Nakayama, K.S., Yokoyama, Y., Xie, G., Zhang, Q.S., Chen, M.W., Sakurai, T. and Inoue, A.: Metallic glass nanowire. Nano Lett. 8, 516 (2008).
11Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).
12Schuh, C.A., Hufnagel, T.C. and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
13Zhang, B., Zhao, D.Q., Pan, M.X., Wang, W.H. and Greer, A.L.: Amorphous metallic plastic. Phys. Rev. Lett. 94, 205502 (2005).
14Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).
15Zhang, Y., Stelmashenko, N.A., Barber, Z.H., Wang, W.H., Lewandowski, J.J. and Greer, A.L.: Local temperature rises during mechanical testing of metallic glasses. J. Mater. Res. 22, 419 (2007).
16Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y. and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
17Wang, G., Zhao, D.Q., Bai, H.Y., Pan, M.X., Xia, A.L., Han, B.S., Xi, X.K., Wu, Y. and Wang, W.H.: Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98, 235501 (2007).
18Ewalds, H.L. and Wanhill, R.J.H.: Fracture Mechanics (Edward Arnold, London, 1984), pp. 5663.
19Lowhaphandu, P. and Lewandowski, J.J.: Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scr. Mater. 38, 1811 (1998).
20Argon, A.S.: The Physics of Strength and Plasticity (MIT Press, Cambridge, MA, 1969), p. 286.
21Flores, K.M. and Dauskardt, R.H.: Local heating associated with crack tip plasticity in Zr-Ti-Ni-Cu-Be bulk amorphous metals. J. Mater. Res. 14, 638 (1999).
22Carslaw, H.S. and Jaeger, J.C.: Conduction of Heat in Solids, 2nd ed. (Clarendon Press, Oxford, UK, 1959), pp. 256258.
23Argon, A.S. and Salama, M.: The mechanism of fracture in glassy materials capable of some inelastic deformation. Mater. Sci. Eng. 23, 219 (1976).
24Guo, H., Yan, P.F., Wang, Y.B., Tan, J., Zhang, Z.F., Sui, M.L. and Ma, E.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).
25Inoue, A.: Stabilization and high strain-rate superplasticity of metallic supercooled liquid. Mater. Sci. Eng., A 267, 171 (1999).
26Vormelker, A.H., Vatamanu, O.L., Kecskes, L. and Lewandowski, J.J.: Effects of test temperature and loading conditions on the tensile properties of a Zr-based bulk metallic glass. Mater. Trans. A 39, 1922 (2008).
27Lewandowski, J.J., Wang, W.H. and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).
28Lewandowski, J.J., Shazly, M. and Nouri, A.S.: Intrinsic and extrinsic toughening of metallic glasses. Scr. Mater. 54, 337 (2006).
29Guo, F.Q., Wang, H.J., Poon, S.J. and Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005).
30Kulawansa, D.M., Dickinson, J.T., Langford, S.C. and Watanabe, Y.: Scanning tunneling microscope observations of metallic glass fracture surfaces. J. Mater. Res. 8, 2543 (1993).
31Lewandowski, J.J.: Effects of annealing and changes in stress state on fracture toughness of bulk metallic glass. Mater. Trans., JIM 42, 633 (2001).
32Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).
33Gu, X.J., McDermott, A.G., Poon, S.J. and Shiflet, G.J.: Critical Poisson's ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006).
34Wang, W.H.: The correlation between the elastic constants and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed