Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T12:00:26.720Z Has data issue: false hasContentIssue false

Plastic flow between Bridgman anvils under high pressures

Published online by Cambridge University Press:  31 January 2011

D. Kuhlmann-Wilsdorf
Affiliation:
Department of Materials Science, University of Virginia, Charlottesville, Virginia 22901
B.C. Cai
Affiliation:
Department of Materials Science, University of Virginia, Charlottesville, Virginia 22901
R.B. Nelson
Affiliation:
Department of Materials Science, University of Virginia, Charlottesville, Virginia 22901
Get access

Abstract

The shear strength of materials after extensive plastic flow under a superimposed high hydrostatic stress component is most conveniently studied by means of Bridgman opposed anvils between which thin disk-shaped samples are sheared through relative rotation. A newly designed apparatus of this type permits, for the first time ever, the monitoring of sample thickness during shearing and thus the obtaining of averaged shear stress/shear strain curves. Such relations are needed for the better understanding of geological processes, behavior under shock or explosive impact, and of the surface layers during friction and wear, among others. A semiquantitative analysis shows that nonuniform pressure distribution in the samples cannot significantly falsify the results. It is concluded that distributed shearing is always accompanied by sample thinning and that, conversely, slippage between anvils and specimens is indicated whenever the sample stops thinning during rotation. Such slippage can be greatly reduced by raising the friction coefficient through etching of samples and/or anvils, but it apparently occurred undiscovered in previous studies, partly after initial distributed shearing. Further, in previous results slippage between directly contacting anvils was frequently mistaken for sample shearing. Additionally, the previously neglected sample material being extruded during shearing can falsify results, as can “turbulent flow” initiated at sample perforation. Correspondingly all prior data gained with Bridgman apparatuses are suspect. Present best results indicate (i) that in metals ordinary dislocation glide but apparently with strongly increased Peierls–Nabarro stresses continues to the highest pressures studied, (ii) that independent of thermal activation workhardening may cease at high strains, and (iii) that “turbulent flow” resulting through sample perforation or when the sample thickness decreases below a critical value, can give rise to mechanical alloying. The majority if not all of the data by Bridgman as well as Vereshchagin et al. probably involved such mechanical alloying. When plotted versus pressure in units of shear moduli, the apparent coefficients of friction of the five cubic metals examined so far follow nearly the same curve but they are lower for metals of lower symmetry.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bridgman, P. W., Phys. Rev. 48, 825847 (1935).CrossRefGoogle Scholar
2.Bridgman, P. W., Proc. Am. Acad. Arts and Sciences 71, 387459 (1937).CrossRefGoogle Scholar
3.Prins, J. F., High Temp.-High Press. 15, 2126 (1983).Google Scholar
4.Prins, J. F., High Temperatures-High Pressures 16, 657664 (1984).Google Scholar
5.Bridgman, P. W., Studies in Large Plastic Flow and Fracture (McGraw-Hill Book Co. New York, 1952).Google Scholar
6.Bridgman, P. W., J. Appl. Phys. 24, 560570 (1953).CrossRefGoogle Scholar
7.Haasen, P. and Lawson, A. W., Z. Metallic. 49, 280291 (1958).Google Scholar
8.Chua, J. O. and Ruoff, A. L., J. Appl. Phys. 46, 46594663 (1975).CrossRefGoogle Scholar
9.Bridgman, P. W., Proc. Am. Acad. Arts and Sciences 81, 165251 (1951).CrossRefGoogle Scholar
10.Boyd, J. and Robertson, B. P., Trans. ASME 67, 5159 (1945).Google Scholar
11.Griggs, D. T., Turner, F. J., and Heard, H. C., Geo. Soc. Am. Memoir 79, 39104 (1960).Google Scholar
12.Vereshchagin, F. L. and Shapochkin, V. A., Zhur. Fiz. Metal, i Metalloved 9, 258 (1960).Google Scholar
13.Vereshchagin, F. L., Zubova, E. V., and Shapochkin, V. A., Pribory i Tekhn. Eksperim. 5, 8393 (1960).Google Scholar
14.Riecker, R. E., Rev. Sci. Inst. 35, 596599 (1964).CrossRefGoogle Scholar
15.Towle, L. C., J. Phys. Chem. Solids 26, 659663 (1965).CrossRefGoogle Scholar
16.Towle, L. C., J. Appl. Phys. 37, 44754476 (1966).CrossRefGoogle Scholar
17.Riecker, R. E., Towle, L. C., and Rooney, T. P., Air Force Cambridge Res. Lab. Rept. 670475, 28 pages (1967).Google Scholar
18.Riecker, R. E. and Towle, L. C., J. Appl. Phys. 38, 51895194 (1967).CrossRefGoogle Scholar
19.Towle, L. C. and Riecker, R. E., J. Appl. Phys. 39, 48074811 (1968).CrossRefGoogle Scholar
20.Towle, L. C. and Riecker, R. E., Appl. Phys. Lett. 13, 159161 (1968).CrossRefGoogle Scholar
21.Towle, L. C., Science 159, 629631 (1968).CrossRefGoogle Scholar
22.Towle, L. C. and Riecker, R. E., Science 163, 4147 (1969).CrossRefGoogle Scholar
23.Towle, L. C., J. Appl. Phys. 42, 23682376 (1971).CrossRefGoogle Scholar
24.Towle, L. C., ASLE Trans. 17, 224228 (1974).CrossRefGoogle Scholar
25.Peterson, M. B. and Ling, F. F., Friction and Lubrication in Metal Processing, edited by Ling, F. F., Whitely, R. L., Ku, P. M., and Peterson, M. B. (Am. Soc. Mech. Eng., New York, 1966), pp. 3968.Google Scholar
26.Hall, H. T., Rev. Sci. Instrum. 29, 267275 (1958).CrossRefGoogle Scholar
27.Hall, H. T., Rev. Sci. Instrum. 31, 125131 (1960).CrossRefGoogle Scholar
28.Dachville, F. and Roy, R., in Modern Very High Pressure Techniques, edited by Wentorf, R. H. (Butterworth's, London, 1972), p. 163.Google Scholar
29.Nishikawa, M. and Akimoto, S., High Temp.-High Press. 3, 161176 (1971).Google Scholar
30.Wakatsuki, M., Ichinose, K., and Aoki, T., Jpn. J. Appl. Phys. 11, 578590 (1972).CrossRefGoogle Scholar
31.Kinsland, G. L. and Bassett, W. A., Rev. Sci. Instrum. 47, 130133 (1976).CrossRefGoogle Scholar
32.Kinsland, G. L. and Bassett, W. A., J. Appl. Phys. 48, 978985 (1977).CrossRefGoogle Scholar
33.Meade, C. and Jeanloz, R., Science 241, 10721074 (1988).CrossRefGoogle Scholar
34.Bundy, F. P., Physica 139 & 140B, 4251 (1986).Google Scholar
35.Lorenzana, H. E., Boppart, H., and Silvera, I. F., Rev. Sci. Instrum. 59, 25832591 (1988).CrossRefGoogle Scholar
36.Meade, C. and Jeanloz, R., J. Geophys. Res.-Solid Earth and Planets 93, 32613269 (1988).CrossRefGoogle Scholar
37.Meade, C. and Jeanloz, R., Nature 339, 616618 (1989).CrossRefGoogle Scholar
38.Cai, B. C., Kuhlmann-Wilsdorf, D., and Nelson, R. B., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990).Google Scholar
39.Kuhlmann-Wilsdorf, D., Acta Metall. 37, 32173223 (1989).CrossRefGoogle Scholar
40.Kuhlmann-Wilsdorf, D., Mater. Sci. and Engr. A113,141 (1989).CrossRefGoogle Scholar
41.Jackson, J. W. and Waxman, M., in High Pressure Measurement, edited by Giardini, A. A. and Lloyd, E. C. (Butterworth's, Washington, 1963), pp. 3958.Google Scholar
42.Myers, M. B., Dachille, F., and Roy, R., Rev. Sci. Instrum. 34, 401402 (1963).CrossRefGoogle Scholar
43.Wakatsuki, M., Jpn. J. Appl. Phys. 4, 540541 (1965).CrossRefGoogle Scholar
44.Okai, B. and Yoshimoto, J., Jpn. J. Appl. Phys. 4, 534535 (1971).CrossRefGoogle Scholar
45.Okai, B. and Yoshimoto, J., High Temp.-High Press. 5, 675678 (1973).Google Scholar
46.Lippincott, E. R. and Duecker, H. C., Science 144, 11191121 (1964).CrossRefGoogle Scholar
47.Lees, J., in Advances in High Pressure Research, edited by Bradley, R. S. (Academic Press, London, 1966), Vol. 1, pp. 283.Google Scholar
48.Hoekstra, S., Munnig-Schmidt van der Burg, M. A., Galenkamp, H., and van Wijngaarden, H., Trans. ASME 50, 194198 (1983).Google Scholar
49.Bandyopadhyay, A. K., Chatterjee, S., Gopal, E. S. R., and Subramanyam, S. V., Rev. Sci. Instrum. 52, 12321235 (1981).CrossRefGoogle Scholar
50.Chan, K. S., Huang, T. L., Grzybowski, T. A., Whetten, T. J., and Ruoff, A. L., J. Appl. Phys. 53, 66076612 (1982).CrossRefGoogle Scholar
51.Cai, B. C., Kuhlmann-Wilsdorf, D., and Nelson, R. B., in Tribology of Composite Materials, edited by Rohatgi, P. K., Blau, P. J., and Ynst, C. S. (ASM INTERNATIONAL, Metals Park, OH, 1990), pp. 8191.Google Scholar
52.Maurice, D. R. and Courtney, T. H., Metall. Trans. 21A, 289303 (1990).CrossRefGoogle Scholar
53.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 10171019 (1983).CrossRefGoogle Scholar
54.Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281302 (1985).CrossRefGoogle Scholar
55.Hellstern, E. and Schultz, L., Appl. Phys. Lett. 49, 11631165 (1986).CrossRefGoogle Scholar
56.Gorsky, V. V., Wear (1991, in press).Google Scholar
57.Jesser, W. A. and Kuhlmann-Wilsdorf, D., Mater. Sci. Eng. 9, 111117 (1972).CrossRefGoogle Scholar
58.Kuhlmann-Wilsdorf, D., Phys. Status Solidi (a) 47, 639649 (1978).CrossRefGoogle Scholar
59.Kuhlmann-Wilsdorf, D., Phys. Rev. 120, 773781 (1960).CrossRefGoogle Scholar