Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T15:39:58.447Z Has data issue: false hasContentIssue false

Piezoelectric Properties of SrBi4Ti4O15 Ferroelectric Ceramics

Published online by Cambridge University Press:  31 January 2011

Marlyse Demartin Maeder
Affiliation:
Ceramics Laboratory, Materials Department, Swiss Federal Institute of Technology - EPEL, 1015 Lausanne, Switzerland
Dragan Damjanovic
Affiliation:
Ceramics Laboratory, Materials Department, Swiss Federal Institute of Technology - EPEL, 1015 Lausanne, Switzerland
Cyril Voisard
Affiliation:
Ceramics Laboratory, Materials Department, Swiss Federal Institute of Technology - EPEL, 1015 Lausanne, Switzerland
Nava Setter
Affiliation:
Ceramics Laboratory, Materials Department, Swiss Federal Institute of Technology - EPEL, 1015 Lausanne, Switzerland
Get access

Abstract

The dynamic piezoelectric response of SrBi4Ti4O15 ceramics with Aurivillius structure was investigated at high alternating stress, low frequencies (0.01 to 100 Hz), and temperatures from 20 to 200 °C. The piezoelectric nonlinearity, observed only at high pressures (>10 MPa) and elevated temperatures (>150 °C), is interpreted in terms of contributions from non-180° domain walls. At weak fields, the frequency dependence of the longitudinal piezoelectric coefficient was explained in terms of Maxwell–Wagner piezoelectric relaxation. The Maxwell–Wagner units are identified as colonies that consist of highly anisotropic grains which sinter together, and whose distribution in the ceramic is strongly dependent on sintering conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Damjanovic, D., Current Opinion in Solid State Mater. Sci. 3, 469 (1998).Google Scholar
2.Park, B.H., Kang, B.S., Bu, S.D., Noh, S.D., Lee, J., and Jo, W., Nature 401, 682 (1999).CrossRefGoogle Scholar
3.Aurivilluis, B., Ark. Kemi. 1, 499 (1949).Google Scholar
4.Newnham, R.E., Wolfe, R.W., and Dorrian, J.F., Mater. Res. Bull. 6, 1029 (1971).CrossRefGoogle Scholar
5.Takenaka, T. and Sakata, K., Jpn. J. Appl. Phys. 19, 31 (1980).CrossRefGoogle Scholar
6.Subbarao, E.C., J. Phys. Chem. Solids. 23, 665(1962).Google Scholar
7.Reaney, I.M., Roulin, M., Schulman, H.S., and Setter, N., Ferroelectrics 165, 295 (1995).CrossRefGoogle Scholar
8.Shulman, H.S., Ph.D. Thesis, Swiss Federal Institute of Technology— EPFL, Lausanne, Switzerland (1997).Google Scholar
9.Voisard, C., Ph.D. Thesis, Swiss Federal Institute of Technology— EPFL, Lausanne, Switzerland (2000).Google Scholar
10.Samjanovic, D., Demartin, M, Shulman, H.S., Testorf, M., and Setter, N., Sens. Actuators A 53, 353 (1996).CrossRefGoogle Scholar
11.Reaney, I.M. and Jamjanovic, D., J. Appl. Phys, 80, 4223 (1996).Google Scholar
12.Hervoches, C., Irvine, J.T.S., and Lightfoot, P., Phys. Rev. B 64, 100102-1 (2001).CrossRefGoogle Scholar
13.Jimenez, B., Duran-Martin, P., Jimenez-Rioboo, R., and Jimenez, R., J. Phys. Conders. Matter 12, 3883 (2000).Google Scholar
14.Damjanovic, D., J. Appl. Phys. 82, 1788 (1997).Google Scholar
15.Damjanovic, D. and Demartin, M., J. Phys. D: Appl, Phys. 29, 2057 (1996).CrossRefGoogle Scholar
16. M. Demartin Maeder, D. Damjanovic, C. Voisard, P. Duran Mating, and N. Setter, in Proc, 12th IEEE Int. Symp. on Applications of Ferroelectrics (IEEE Service Center, Piscataway, NJ) (2000).Google Scholar
17.Damjanovic, D., in Electroceramics IV, Vol. 1, edited by Waser, R.M., Hoffmann, S., Bonnenberg, D., and Hoffmann, C. (Augustinus Buchhandlung, Aachen, Germany, 1994), pp. 239246.Google Scholar
18.Mueller, V. and Zhang, Q.M., Appl. Phys. Lett. 72, 2692 (1998).CrossRefGoogle Scholar
19.Mueller, V. and Zhang, Q.M., J. Appl. Phys. 83, 3754 (1998).CrossRefGoogle Scholar
20.Zhang, Q.M., Pan, W.Y., Jang, S.J., and Cross, L.E., J. Appl. Phys. 64, 6445 (1988).CrossRefGoogle Scholar
21.Li, S., Cao, W., and Cross, L.E., J. Appl. Phys. 69, 7219 (1991).CrossRefGoogle Scholar
22.Hagerman, H.J., J. Phys. C: Solid State Phys. 11, 3333 (1978).CrossRefGoogle Scholar
23.Damjanovic, D. and Demartin, M., J. Phys.: Condens. Matter 9, 4943 (1997).Google Scholar
24.Robert, G., Damjanovic, D., Setter, N., and Turik, A.V., J. Appl. Phys. 89, 5967 (2001).Google Scholar
25.Strobl, G.R., The Physics of Polymers (Springer, Berlin, Germany, 1996).CrossRefGoogle Scholar
26.Damjanovic, D., Maeder, M. Demartin, Voisard, C., and Setter, N., J. Appl. Phys 90, 5708 (2001).CrossRefGoogle Scholar
27.Sagalowicz, L., Chu, F., Martin, P. Duran, and Damjanovic, D., J. Appl. Phys. 88, 7258 (2001).Google Scholar