Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:57:42.224Z Has data issue: false hasContentIssue false

Piezoelectric properties of lead-free (Na0.5Bi0.5)TiO3–(Na0.5K0.5)NbO3–BaTiO3 ceramics

Published online by Cambridge University Press:  31 January 2011

Seung-Ho Lee
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Chang-Bun Yoon
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Sung-Mi Lee
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Hyoun-Ee Kim*
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
Kyung-Woo Lee
Affiliation:
Kyungwon Ferrite Ind. Co., Ltd., Shiheung-si, Kyonggi-do 429-450, Korea
*
a)Address all correspondence to this author. e-mail: kimhe@snu.ac.kr
Get access

Abstract

The microstructural evolution and piezoelectric properties of lead-free ceramics (0.98-x)(Na0.5Bi0.5)TiO3x(Na0.5K0.5)NbO3–0.02BaTiO3 (0 ⩽ x ⩽ 0.98, abbreviated as (0.98-x)NBT–xNKN–0.02BT) were investigated. The effects of the amount of NKN on the crystal structure, microstructural evolution, and piezoelectric properties were examined. The 0.93NBT–0.05NKN–0.02BT ceramics having a lower NKN content gave good performances with piezoelectric properties of d33 = 140 pC/N and kp = 21%, because of the soft additive Nb5+ ions at the B sites. However, a paraelectric cubic phase was observed in the wide range of compositions between x = 0.1 and x = 0.9. At a higher NKN content of x > 0.9, a morphotropic phase boundary (MPB) between the tetragonal and orthorhombic phases was found in the 0.015NBT–0.965NKN–0.02BT ceramics, and the piezoelectric properties were enhanced (d33 = 135 pC/N, kp = 29%). The piezoelectric properties of this system were closely related to its crystal structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jaffe, B., Cook, W.R. Jr.Jaffe, H.: Piezoelectric Ceramics Academic Press London, UK 1971Google Scholar
2Xu, Y.: Ferroelectric Materials and Their Applications Elsevier Science Publishers Amsterdam, The Netherlands 1991Google Scholar
3Duran, C., Mckinstry, S.T.Messing, G.L.: Fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth. J. Am. Ceram. Soc. 83, 2203 2000CrossRefGoogle Scholar
4Xie, R.J., Akimune, Y., Wang, R.P., Matsuo, K., Sugiyama, T.Hirosaki, N.: Spark plasma sintering of tungsten bronze Sr2−xCaxNaNb5O15 (x = 0.1) piezoelectric ceramics. J. Am. Ceram. Soc. 85, 2725 2002CrossRefGoogle Scholar
5Xie, R.J.Akimune, Y.: Lead-free piezoelectric ceramics in the (1–x)Sr2NaNb5O15xCa2NaNb5O15 (0.05 ⩽ x ⩽ 0.35) system. J. Mater. Chem. 12, 3156 2002CrossRefGoogle Scholar
6Suzuki, M., Nagata, H., Ohara, J., Funakubo, H.Takenaka, T.: Bi3−xMxTiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Q m. Jpn. J. Appl. Phys. 42, 6090 2003CrossRefGoogle Scholar
7Sawada, T., Ando, A., Sakabe, Y., Damjanovic, D.Setter, N.: Properties of the elastic anomaly in SrBi2Nb2O9-based ceramics. Jpn. J. Appl. Phys. 42, 6094 2003CrossRefGoogle Scholar
8Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I.Krainik, N.N.: New ferroelectrics of complex composition. Sov. Phys. Solid State (Engl. Transl.) 2, 2651 1961Google Scholar
9Takenaka, T., Maruyama, K.Sakata, K.: (Bi1/2Na1/2) TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 1991CrossRefGoogle Scholar
10Nagata, H., Yoshida, M., Makiuchi, Y.Takenaka, T.: Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate–bismuth potassium titanate–barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401 2003CrossRefGoogle Scholar
11Takenaka, T., Okuda, T.Takegahara, K.: Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3–NaNbO3. Ferroelectrics 196, 175 1997CrossRefGoogle Scholar
12Nagata, H.Takenaka, T.: Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–1/2(Bi2O3·Sc2O3) system. Jpn. J. Appl. Phys. 36, 6055 1997CrossRefGoogle Scholar
13Herabut, A.Safari, A.: Processing and electromechanical properties of (Bi0.5Na0.5)(1–1.5x )LaxTiO3 ceramics. J. Am. Ceram. Soc. 80, 2954 1997CrossRefGoogle Scholar
14Shirane, G., Newnham, R.Pepinsky, R.: Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys. Rev. 96, 581 1954CrossRefGoogle Scholar
15Egerton, L.Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J. Am. Ceram. Soc. 42, 438 1959CrossRefGoogle Scholar
16Jaeger, R.E.Egerton, L.: Hot pressing of potassium–sodium niobate. J. Am. Ceram. Soc. 45, 208 1962CrossRefGoogle Scholar
17Haertling, G.H.: Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329 1967CrossRefGoogle Scholar
18Guo, Y., Kakimoto, K.Ohsato, H.: Structure and electrical properties of lead-free (Na0.5K0.5)NbO3–BaTiO3 ceramics. Jpn. J. Appl. Phys. 43, 6662 2004CrossRefGoogle Scholar
19Guo, Y., Kakimoto, K.Ohsato, H.: Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics. Solid State Commun. 129, 279 2004CrossRefGoogle Scholar
20Wang, R., Xie, R., Sekiya, T., Shimojo, Y., Akimune, Y., Hirosaki, N.Itoh, M.: Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3–PbTiO3 ceramics. Jpn. J. Appl. Phys. 41, 7119 2002CrossRefGoogle Scholar
21Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T.Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 2004CrossRefGoogle ScholarPubMed
22IEEE Standard on PiezoelectricityIEEE Standard 176-1987, Institute of Electrical and Electronic Engineers New York 1987Google Scholar
23Li, Y., Chen, W., Xu, Q., Zhou, J., Sun, H.Liao, M.: Dielectric and piezoelectric properties of (Na0.5Bi0.5)TiO3–(K0.5Bi0.5) TiO3–NaNbO3 lead-free ceramics. J. Electroceram. 14, 53 2005CrossRefGoogle Scholar
24Zhdanov, G.C.Solid State Physics, Vol. 1, Moscow University Press Moscow 1961 184Google Scholar
25Zuo, R., Fang, X.Ye, C.: Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics. Appl. Phys. Lett. 90, 092904 2007CrossRefGoogle Scholar
26Reznichenko, L.A., Razumovskaya, O.N., Shilkina, L.A., Aleshin, V.A., Dudkina, S.I.Borodin, A.V.: Effect of synthesis temperature on the ferroelectric properties of ceramics based on lead zirconate titanate and alkali niobates. Inorg. Mater. (Engl. Transl.) 38, 1069 2002CrossRefGoogle Scholar
27Zhen, Y.Li, J.F.: Normal sintering of (K, Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 3669 2006CrossRefGoogle Scholar
28Zharikov, E.V., Ivleva, L.I., Kuz’minov, Yu.S.Osiko, V.V.: Effect of hydroxyl groups on the dielectric and optical properties of alkaline-earth niobate crystals. Izv. Akad. Nauk SSSR. Neorg. Mater. 11, 875 1975Google Scholar