Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T02:49:40.727Z Has data issue: false hasContentIssue false

Piezoelectric, ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films with compositions around the morphotropic phase boundary prepared by a sol-gel process of reduced thermal budget

Published online by Cambridge University Press:  31 January 2011

A. Santos
Affiliation:
Instituto Ciencia de Materiales de Madrid (CSIC), 28049 Madrid, Spain
M.G. Cain
Affiliation:
National Physical Laboratory (NPL), Teddington TW11 0LW, United Kingdom
L. Pardo
Affiliation:
Instituto Ciencia de Materiales de Madrid (CSIC), 28049 Madrid, Spain
Get access

Abstract

Single perovskite polycrystalline Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN-PT) thin films with PMN to PT ratios around the morphotropic phase boundary composition (070PMN-0.30PT, 0.65PMN-0.35PT, and 0.60PMN-0.40PT) have been prepared by chemical solution deposition (CSD). Air-stable and precipitate-free PMN and PT precursor sols were separately synthesized, and PMN-PT sols were obtained by the simple mixture in air of the former. The PMN-PT sols were deposited onto Pt-coated Si substrates and dried on a hot-plate. Crystallization of the films was carried out by rapid thermal processing (RTP) in oxygen, using different temperatures, soaking times, and heating rates. Single perovskite PMN-PT thin films were obtained at low temperatures (650 °C) with short soaking times (6s) and rapid heating rates (200 °C/s). The films show a columnar growth and a uniform thickness. Both the evolution of the perovskite distortion and the electrical properties with the PMN to PT ratio indicate the correct formation of the solid solution. The temperature and frequency dependences of the permittivity and the ferroelectric loops also indicate an increase of the relaxor characteristic of the films as compared with bulk materials. Piezoelectric coefficients were measured across the ferroelectric loop by optical interferometry, and an enhancement of piezoelectricity at the MPB composition was found. A piezoelectric d33 coefficient of ∼55 pC/N was measured in ∼300-nm-thick films of this composition with a saturation polarisation of Ps ∼25 μC/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nomura, S., Uchino, K.: Recent applications of PMN-based electrostrictors. Ferroelectrics 50, 197 (1983)CrossRefGoogle Scholar
2.Park, S.E., Shrout, T.R.: Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultr. Ferr. Freq. Contr. 44, 1140 (1997)CrossRefGoogle Scholar
3.Park, S.E., Shrout, T.R.: Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mater. Res. Innov. 1, 20 (1997)CrossRefGoogle Scholar
4.Choi, S.W., Shrout, T.R., Jang, S.J., Bhalla, A.: Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3–PbTiO3 system. Ferroelectrics 100, 29 (1989)CrossRefGoogle Scholar
5.Park, S.E., Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997)CrossRefGoogle Scholar
6.Kelly, J., Leonard, M., Tantigate, C., Safari, A.: Effect of composition on the electromechanical properties of (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 ceramics. J. Am. Ceram. Soc. 80, 957 (1997)CrossRefGoogle Scholar
7.Kwon, S., Sabolsky, E.M., Messing, G.L., Trolier McKinstry, S.: High strain, T001Y textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: Templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88, 312 (2005)CrossRefGoogle Scholar
8.Semiconductor Industry Association: International Technology Roadmap for Semiconductors (International SEMATECH, Austin TX, 2006). Available at http://www.itrs.net/Links/2006Update/2006UpdateFinal.htmGoogle Scholar
9.Polla, D.L., Francis, L.F.: Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Ann. Rev. Mater. Sci. 28, 563 (1998)CrossRefGoogle Scholar
10.Swartz, S.L., Shrout, T.R.: Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 1245 (1982)CrossRefGoogle Scholar
11.Kuscer, D., Holc, J., Kosec, M.: Mechano-synthesis of lead-magnesium-niobate ceramics. J. Am. Ceram. Soc. 89, 3081 (2006)CrossRefGoogle Scholar
12.Zhai, J.W., Shen, B., Zhang, L.Y., Yao, X.: Preparation and dielectric properties by sol-gel derived PMN-PT powder and ceramic. Mater. Chem. Phys. 64, 1 (2000)Google Scholar
13.Francis, L.F., Payne, D.A.: Thin-layer dielectrics in the Pb[(Mg1/3Nb2/3)1−xTix]O3 system. J. Am. Ceram. Soc. 74, 3000 (1991)Google Scholar
14.Nagarajan, V., Ganpule, C.S., Nagaraj, B., Aggarwal, S., Alpay, S.P., Roytburd, A.L., Williams, E.D., Ramesh, R.: Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3(90%)–PbTiO3(10%) relaxor thin films. Appl. Phys. Lett. 75, 4183 (1999)CrossRefGoogle Scholar
15.Ouyang, J., Kim, D.H., Eom, C.B., Ramesh, R., Roythbourd, A.L.: Orientation dependence of the intrinsic converse longitudinal piezoelectric constant for 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 ferroelectric films with a rhombohedral structure. Smart Mater. Struct. 14, 524 (2005)CrossRefGoogle Scholar
16.Park, J.H., Trolier-McKinstry, S.: Dependence of dielectric and piezoelectric properties on film thickness for highly {100}-oriented lead magnesium niobate-lead titanate (70/30) thin films. J. Mater. Res. 16, 268 (2001)CrossRefGoogle Scholar
17.Park, J.H., Xu, F., Trolier-McKinstry, S.: Dielectric and piezoelectric properties of sol-gel derived lead magnesium niobium titanate films with different textures. J. Appl. Phys. 89, 568 (2001)Google Scholar
18.Kighelman, Z., Dramjanovic, D., Setter, N.: Dielectric and electromechanical properties of ferroelectric-relaxor 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thin films. J. Appl. Phys. 90, 4682 (2001)CrossRefGoogle Scholar
19.Calzada, M.L., Bretos, I., Jiménez, R., Guillon, H., Pardo, L.: Low-temperature processing of ferroelectric thin films compatible with silicon integrated circuit technology. Adv. Mater. 16, 1620 (2004)CrossRefGoogle Scholar
20.European Union Directive 2002/95/EC on the Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS directive). Available at http://www.crouzet-usa.com/RoHS.pdfGoogle Scholar
21.Phillips, N.J., Calzada, M.L., Milne, S.J.: Sol gel-derived lead titanate films. J. Non-Cryst. Solids 147–148, 285 (1992)CrossRefGoogle Scholar
22.Calzada, M.L., Jiménez, R., González, A., Mendiola, J.: Air-stable solutions for the low-temperature crystallization of strontium bismuth tantalate ferroelectric films. Chem. Mater. 13, 3 (2001)CrossRefGoogle Scholar
23.Calzada, M.L., Algueró, M., Ricote, J., Santos, A., Pardo, L.: Preliminary results on sol-gel processing of T100Y oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films using diol-based solutions. J. Sol-Gel Sci. Technol. 42, 331 (2007)CrossRefGoogle Scholar
24.Milne, S.J., Pyke, S.H.: Modified sol-gel process for the production of lead titanate films. J. Am. Ceram. Soc. 74, 1407 (1991)CrossRefGoogle Scholar
25.Cain, M.G., Lowe, M.J., Cuenat, A., Stewart, M., Blackburn, J.: Quantification of properties of ferroelectric thin film using piezoresponse force microscopy,Proceedings Nanotech 2005, edited by M. Laudon and B. Romanowicz. (Nanoscience & Technology Institute, Cambridge, MA, 2004)362Google Scholar
26.Tu, Y.L., Calzada, M.L., Phillips, N.J., Milne, S.J.: Synthesis and electrical characterization of thin films of PT and PZT made from a diol-based sol-gel route. J. Am. Ceram. Soc. 79, 441 (1996)CrossRefGoogle Scholar
27.Calzada, M.L., González, A.: Tantalum penta-glycolate sol as a precursor of strontium bismuth tantalate ferroelectric thin films. J. Am. Ceram. Soc. 88, 2702 (2005)CrossRefGoogle Scholar
28.Mehrotra, R.C., Kapoor, P.N.: Organic compounds of niobium V. Reaction of niobium pentaethoxide with glycols. J. Less Common Met. 8, 419 (1965)Google Scholar
29.Kapoor, R.N., Prakash, S., Kapoor, P.N.: Reactions of niobium and tantalum pentaethoxides with glycols. Z. Anorg. Allg. Chem. 351, 219 (1967)CrossRefGoogle Scholar
30.Beltrán, H., Cordoncillo, E., Escribano, P., Carda, J.B., Cotas, A., West, A.R.: Sol-gel synthesis-and characterization of Pb(Mg1/3Nb2/3)O3 (PMN) ferroelectric perovskite. Chem. Mater. 12, 400 (2000)CrossRefGoogle Scholar
31.Calzada, M.L., Sirera, R., Carmona, F., Jiménez, B.: Investigations of a diol-based sol-gel process for the preparation of lead titanate materials. J. Am. Ceram. Soc. 78, 1802 (1995)CrossRefGoogle Scholar
32.Fan, H., Park, G.T., Choi, J.J., Kim, H.E.: Preparation and characterization of sol-gel-derived lead magnesium niobium titanate thin films with pure perovskite phase and lead oxide cover coat. J. Am. Ceram. Soc. 85, 2001 (2002)CrossRefGoogle Scholar
33.Calzada, M.L., González, A., Jiménez, R., Alemany, C., Mendiola, J.: Rapid thermal processing of strontium bismuth tantalate ferroelectric thin films prepared by a novel chemical solution deposition method. J. Eur. Ceram. Soc. 21, 1517 (2001)CrossRefGoogle Scholar
34.Singh, A.K., Pandey, D.: Evidence for M-B and M-C phases in the morphotropic phase boundary region of (1 − x)[Pb(Mg1/3Nb2/3)O3]–xPbTiO3: A Rietveld study. Phys. Rev. B 67, 064102 (2003)CrossRefGoogle Scholar
35.Wang, Z.J., Aoki, Y., Kokawa, H., Maeda, R.: Crystal structure and microstructure of lead zirconate titanate (PZT) thin films with various Zr/Ti ratios grown by hybrid processing. J. Cryst. Growth 267, 92 (2004)CrossRefGoogle Scholar
36.Ong, R.J., Payne, D.A.: Processing effects for integrated PZT: Residual stress, thickness, and dielectric properties. J. Am. Ceram. Soc. 88, 2839 (2005)CrossRefGoogle Scholar
37.Jiménez, R., González, A., Calzada, M.L., Mendiola, J.: Study of electrolytic laminated ferroelectric thin films from electroded substrates. J. Mater. Res. 15, 1041 (2000)Google Scholar
38.Zhao, J., Zhang, Q.M., Kim, N., Shrout, T.: Electromechanical properties of relaxor ferroelectric lead magnesium niobate-lead titanate ceramics. Jpn. J. Appl. Phys. 34, 5658 (1995)Google Scholar
39.Algueró, M., Moure, A., Pardo, L., Holc, J., Kosec, M.: Processing by mechanosynthesis and properties of piezoelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 with different compositions. Acta Mater. 54, 501 (2006)CrossRefGoogle Scholar
40.Parker, C.B., Maria, J.P., Kingon, A.I.: Temperature and thickness dependent permittivity of (Ba,Sr)TiO3 thin films. Appl. Phys. Lett. 81, 340 (2002)Google Scholar
41.Kholkin, A.L., Akdogan, E.K., Safari, A., Chauvy, P.F., Setter, N.: Characterization of the effective electrostriction coefficients in ferroelectric thin films. J. Appl. Phys. 89, 8066 (2001)Google Scholar
42.Guo, R., Cross, L.E., Park, S.E., Noheda, B., Cox, D.E., Shirane, G.: Origin of the high piezoelectric response in PbZr1−xTixO3. Phys. Rev. Lett. 84, 5423 (2000)CrossRefGoogle ScholarPubMed
43.Arndt, H., Sauerbier, F., Schmidt, G., Shebanov, L.A.: Field-induced phase-transition in Pb(Mg1/3Nb2/3)O3 single-crystals. Ferroelectrics 79, 439 (1988)CrossRefGoogle Scholar
44.Algueró, M., Ricote, J., Jiménez, R., Ramos, P., Carreaud, J., Dkhill, B., Kiat, J.M., Holc, J., Kosec, M.: Size effect in morphotropic phase boundary Pb(Mg1/3Nb2/3)O3–PbTiO3. Appl. Phys. Lett. 91, 112905 (2007)CrossRefGoogle Scholar