Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T10:10:13.882Z Has data issue: false hasContentIssue false

Physicochemical characterization of sputtered iridium oxide

Published online by Cambridge University Press:  31 January 2011

B. Aurian-Blajeni
Affiliation:
EIC Laboratories, III Downey Street, Norwood, Massachusetts 02062
M. M. Boucher
Affiliation:
EIC Laboratories, III Downey Street, Norwood, Massachusetts 02062
A. G. Kimball
Affiliation:
EIC Laboratories, III Downey Street, Norwood, Massachusetts 02062
L. S. Robblee
Affiliation:
EIC Laboratories, III Downey Street, Norwood, Massachusetts 02062
Get access

Abstract

In the present work we characterize sputtered iridium oxide films (SIROF) by differential scanning calorimetry (DSC), x-ray, and impedance spectroscopies. We show that a crystallization transition occurs at ca, 230 °C, and suggest a bilayer model for the sputtered film. The transition results in a crystalline mixture of iridium metal and iridium oxide; this suggests a decomposition-crystallization process of the type 2Ir2O3 ⇉ Ir + 3IrO2. In the bilayer model proposed by us, the layer closer to the substrate would reflect the combined influence of the sputtering conditions and of the substrate, while the properties of the second layer depend on the sputtering conditions alone. The bilayer structure is supported by results obtained by impedance spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gottesfeld, S. and Srinivasan, S., J. Electroanal. Chem. 86, 89 (1978).CrossRefGoogle Scholar
2Rolewicz, J., Comninellis, C., Plattner, E., and Hinden, J., Electrochim. Acta 33, 573 (1988).CrossRefGoogle Scholar
3Mozota, J. and Conway, B.E., J. Electrochem. Soc. 128, 2142 (1981).CrossRefGoogle Scholar
4Hackwood, S., Schiavone, L. M., Dautremont-Smith, W. C., and Beni, G., J. Electrochem. Soc. 128, 2569 (1981).CrossRefGoogle Scholar
5Dautremont-Smith, W. C., Displays 3, 67 (1982).CrossRefGoogle Scholar
6Gottesfeld, S. and Mclntyre, J.D.E., J. Electrochem. Soc. 126, 742 (1979).CrossRefGoogle Scholar
7Katsube, T., Lauks, I., and Zemel, J. N., Sensors and Actuators 2, 399 (1982).Google Scholar
8Burke, L. D., Mulcahy, J. K., and Whelan, D. P., J. Electroanal. Chem. 163, 117 (1984).Google Scholar
9Kinoshita, K. and Madou, M. J., J. Electrochem. Soc. 131, 1089 (1984).Google Scholar
10Kreider, K., J. Vac. Sci. Technol. A4, 606 (1986).CrossRefGoogle Scholar
11Papeschi, G., Bordi, S., Carla, M., Criscione, L., and Ledda, F., J. Med. Eng. & Technol. 5, 86 (1981).CrossRefGoogle Scholar
12Bordi, S.M., Carla, M., Papeschi, G., and Pinzauti, S., Anal. Chem. 56, 317 (1984).CrossRefGoogle Scholar
13Robblee, L. S., Lefko, J.L., and Brummer, S.B., J. Electrochem. Soc. 130, 731 (1983).CrossRefGoogle Scholar
14Robblee, L. S., Mangaudis, M.M., Lasinsky, E. D., Kimball, A. G., and Brummer, S.B., Mat. Res. Soc. Symp. 55, 303 (1986).Google Scholar
15Beebe, X. and Rose, T. L., IEEE Trans. Biomed. Engn. 35, 494 (1988).CrossRefGoogle Scholar
16Craig, D.R., U.S. Patent 0078404A2, 1982.Google Scholar
17Hackwood, S., Beni, G., and Gallagher, P. K., Solid State Ionics 2, 297 (1981).Google Scholar
18Hackwood, S., Dayem, A.H., and Beni, G., Phys. Rev. B 26, 471 (1982).CrossRefGoogle Scholar
19Chapman, B., Glow Discharge Processes (Wiley Interscience, New York, 1980).Google Scholar
20ASTM Powder Diffraction Data Files, JCPDS, Philadelphia, PA.Google Scholar
21Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).Google Scholar
22Lunde, G., Z. anorg. Chem. 163, 345 (1927).CrossRefGoogle Scholar
23Rogers, D.B., Shannon, R.D., Sleight, A. W., and Gillson, J.L., Inorg. Chem. 8, 841 (1969).Google Scholar
24Michell, D., Rand, D. A. J., and Woods, R., J. Electroanal. Chem. 84, 117 (1977).CrossRefGoogle Scholar
25Claus, C., J. prakt. Chem. 42, 359 (1847).CrossRefGoogle Scholar
26Claus, C., J. prakt. Chem. 80, 302 (1860).Google Scholar
27Muylder, J. Van and Pourbaix, M., in Atlas of Electrochemical Equilibria in Aqueous Solutions, edited by Pourbaix, M. (Pergamon, Oxford, 1966).Google Scholar
28Dodd, J. W. and Tonge, K. H., Thermal Methods (J. Wiley & Sons, Chichester, 1987), p. 166.Google Scholar
29Levie, R. De, Electrochim. Acta 9, 1231 (1964).Google Scholar
30Wang, J. C., Electrochim. Acta 33, 707 (1988).CrossRefGoogle Scholar
31Pajkossy, T. and Nyikos, L., Electrochim. Acta 33, 713 (1988).CrossRefGoogle Scholar
32Macdonald, J. R., J. Appl. Phys. 58, 1955 (1985).CrossRefGoogle Scholar
33Gottesfeld, S. and Mclntyre, J.D.E., J. Electrochem. Soc. 126, 742 (1979).CrossRefGoogle Scholar
34Burke, L. D. and Scannel, R. A., J. Electroanal. Chem. 175, 119 (1984).CrossRefGoogle Scholar
35Pickup, P. G. and Birss, V. I., J. Electroanal. Chem. 240, 185 (1988).Google Scholar
36Hackwood, S., Dautremont-Smith, W. C., Beni, G., Schiavone, L. M., and Shay, J. L., J. Electrochem. Soc. 128, 1212 (1981).Google Scholar