Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T10:09:53.128Z Has data issue: false hasContentIssue false

Photoelectrochemical and Photocatalytic Properties of Multilayered TiO2 Thin Films With a Spinodal Phase Separation Structure Prepared by a Sol-Gel Process

Published online by Cambridge University Press:  03 March 2011

Ryohei Mori
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
Masahide Takahashi*
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
Toshinobu Yoko
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
*
a)Address all correspondence to this author. e-mail: masahide@noncry.kuicr.kyoto-u.ac.jp
Get access

Abstract

Multilayered titanium dioxide thin films with a spinodal phase separation structure were prepared by the sol-gel process from sols containing polyoxyethylene(20) nonylphenyl ether (NPE-20), and their photoelectrochemical and photocatalytic properties were investigated. The obtained films showed much higher anodic photocurrent and photocatalytic activity than the dense TiO2 thin film electrodes. We explained these phenomena by the large specific surface area inherent in the spinodal phase separation structure and the higher concentration of Ti3+ species, which were produced by the reducing action of the incorporated organic polymers at sintering temperatures. Ti3+ species in the bulk raise the donor density, and those at the surface provide a larger number of active sites available for photoelectrochemical reaction and photocatalytic reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
2Al-Ekabi, H., Serpone, N., Pelizzetti, E., Minero, C., Fox, A.M. and Draper, B.R.: Nucleation and growth of monosized titania powders from alcohol solution. Langmuir 2, 250 (1989).CrossRefGoogle Scholar
3Serpone, N., Ah-You, K.Y., Tran, P.T., Harris, R., Pelizzetti, E. and Hidaka, H.: AM1 simulated sunlight photoreduction and elimination of Hg(II) and CH3Hg(II) chloride salts from aqueous suspensions of titanium dioxide. Sol. At. Energy (London) 39, 491 (1987).CrossRefGoogle Scholar
4O’Regan, B. and Grätzel, M.: A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
5Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissörtel, F., Salbeck, J., Spreitzer, H. and Grätzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high proton-to-electron conversion efficiencies. Nature 395, 583 (1998).CrossRefGoogle Scholar
6Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N. and Grätzel, M.: Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382 (1993).CrossRefGoogle Scholar
7He, J., Lindström, H., Hagfeldt, A. and Lindquis, S.E.: Dye-sensitized nanostructured tandem cell first demonstrated cell with a dye-sensitized photocathode. Solar Energy Mater. Sol. Cells 62, 265 (2000).CrossRefGoogle Scholar
8Murakoshi, K., Kogure, R., Wada, Y. and Yanagida, S.: Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. (Jpn.) 26, 471 (1997).CrossRefGoogle Scholar
9Zhao, G., Kozuka, H., Lin, H. and Yoko, T.: Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid Films 339, 123 (1996).CrossRefGoogle Scholar
10Zhao, G., Kozuka, H., Lin, H. and Yoko, T.: Preparation and photoelectrochemical properties of Ti1-xVxO2 solid solution thin film photoelectrodes with gradient bandgap. Thin Solid Films 340, 125 (1996).CrossRefGoogle Scholar
11Zhao, G., Kozuka, H. and Yoko, T.: Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 277, 147 (1996).CrossRefGoogle Scholar
12Zhao, G., Kozuka, H. and Yoko, T.: Photoelectrochemical properties of dye-sensitized TiO2 films containing dispersed gold metal particles prepared by sol-gel method. J. Ceram. Soc. Jpn. 104, 164 (1996).CrossRefGoogle Scholar
13Frank, J.A.: AIP Conference Proceedings: Future Generation Photovoltaic Technologies Proceedings of the First NREL Conference. NICH Report No. 24469, 145 1997 .Google Scholar
14de Jongh, P.E. and Vanmaekelbergh, D.: Investigation of the electronic transport properties of nanocrystalline particulate TiO2 electrodes by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B 101, 2716 (1997).CrossRefGoogle Scholar
15Mori, R., Takahashi, M. and Yoko, T.: 2D spinodal phase separated TiO2 films prepared by sol-gel process and photocatalytic activity. Mater. Res. Bull. 39, 2137 (2004).CrossRefGoogle Scholar
16Warren, B.E.: X-ray Diffraction (Addison Wesley, Reading, MA, 1969) Ch. 13.Google Scholar
17Finklea, H.O.: Semiconductor Electrodes (Elsevier, Amsterdam, 1988).Google Scholar
18Nogami, G. and Ogawa, Y.: Electrochemical properties of polycrystalline TiO2 electrodes prepared by anodic oxidation. J. Electrochem. Soc. 135, 3008 (1988).CrossRefGoogle Scholar
19Zhao, G., Utsumi, S., Kozuka, H. and Yoko, T.: Photoelectrochemical properties of sol-gel-derived anatase and rutile TiO2 films. J. Mater. Sci. 33, 3655 (1998).CrossRefGoogle Scholar
20Yoko, T., Yuasa, A., Kamiya, K. and Sakka, S.: Sol-gel-derived TiO2 film semiconductor electrode for photocleavage of water. J. Electrochem. Soc. 138, 2279 (1991).CrossRefGoogle Scholar
21Zhang, Z., Jeng, S.P. and Henrish, V.E.: Cation-ligand hybridization for stoichiometric and reduced TiO2 (110) surfaces determined by resonant photoemission. Phys. Rev. B 43, 12004 (1991).CrossRefGoogle ScholarPubMed
22Ghosh, A.K., Wakim, F.G. and Addiss, R.R.: Photoelectronic processes in rutile. Phys. Rev. 184, 979 (1969).CrossRefGoogle Scholar
23Yoko, T., Hu, L., Kozuka, H. and Sakka, S.: Photoelectrochemical properties of TiO2 coating films prepared using different solvents by sol-gel method. Thin Solid Films 283, 188 (1996).CrossRefGoogle Scholar
24Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N.: Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobio. A: Chem. 140, 163 (2001).CrossRefGoogle Scholar