Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T02:27:23.628Z Has data issue: false hasContentIssue false

Photoconductive Bi12MO20-type films prepared by pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

J. E. Alfonso
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
M. J. Martín
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
V. Volkov
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
C. Zaldo*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
M. Aguiló
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia, Universitat Rovira I Virgili, 43005 Tarragona, Spain
M. F. da Silva
Affiliation:
Instituto Tecnológico e Nuclear, Departámento de Física, Estrada Nacional n 10, 2685 Sacavém, Portugal
J. C. Soares
Affiliation:
Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa, Portugal
*
c)Address all correspondence to this author. e-mail: cezaldo@icmm.csic.es
Get access

Abstract

Bi12TiO20 (BTO); Bi12GaxBi1−xO19.5 (BGaO); and Bi12(M1/3P2/3)O20, M = Cd, Zn, and Ni (BMPO) thin films were prepared by pulsed laser deposition using a KrF excimer laser on (100)Y-stabilized zirconia (YSZ), (100)Bi12GeO20 (BGO), and (110)Bi12SiO20 (BSO) crystalline substrates. All these films have a sillenite structure. On (100)YSZ the sillenite is oriented as {310} with the 〈130〉 direction parallel to the 〈021〉YSZ directions (〈130〉{310}BTO〈021〉{100}YSZ). On (100)BGO and (110)BSO the sillenite film reproduces the substrate orientation, and the films formed are able to channel He+ particles. The optimum deposition temperatures for BTO and BGaO are 600 and 550 °C, respectively. Higher temperatures must be avoided to minimize the nucleation of Bi-deficient phases due to the diffusion of Bi into the YSZ substrates. BMPO films are polycrystalline. The lattice parameters of these films were determined. The crystalline films support guided optical modes. The refractive indices obtained for the films are close to those measured in bulk crystals, being slightly larger for films deposited on isomorphous sillenite substrates. The crystalline films deposited on YSZ are photoconductors when excited in the green and blue spectral regions.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Photorefractive Materials and Their Applications I, edited by P. Günter and J.P. Huignard (Springer Verlag, Berlin, 1988).Google Scholar
2.Levin, E. and Roth, R.S., J. Res. Natl. Bur. Stand. Sect. A 68, 197 (1964).CrossRefGoogle Scholar
3.Kargin, Y.F., Marín, A.A., and Skorikov, V.M., Izv. Akad. Nauk. SSSR Neorg. Mater. 18, 1605 (1982).Google Scholar
4.Balman, A.A., Brown, H., Tien, P.K., and Martin, R.J., J. Cryst. Growth 20, 251 (1973).CrossRefGoogle Scholar
5.Silvestri, V.J., Sedgwick, T.O., and Landermann, J.B., J. Cryst. Growth 20, 165 (1973).CrossRefGoogle Scholar
6.Youden, K.E., Eason, R.W., Gower, M.C., and Vainos, N.A., Appl. Phys. Lett. 59, 1929 (1991).CrossRefGoogle Scholar
7.Alfonso, J.E., Martín, M.J., Mendiola, J., Ruiz, A., Zaldo, C., da Silva, M.F., and Soares, J.C., J. Appl. Phys. 79, 8210 (1996).CrossRefGoogle Scholar
8.Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T., and Kawai, S., J. Appl. Phys. 77, 1498 (1995).CrossRefGoogle Scholar
9.Zaldo, C., Gill, D.S., Eason, R.W., Mendiola, J., and Chandler, P.J., Appl. Phys. Lett 65, 502 (1994).CrossRefGoogle Scholar
10.Martín, M.J., Alfonso, J.E., Mendiola, J., Zaldo, C., Gill, D.S., Eason, R.W., and Chandler, P.J., J. Mater. Res. 12, 2699 (1997).CrossRefGoogle Scholar
11.Doolittle, L.R., Nucl. Instrum. Methods Phys. Res. Sect. B 9, 334 (1985).CrossRefGoogle Scholar
12.Hunsperger, R.G., Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984), Chap. 6, pp. 88106.CrossRefGoogle Scholar
13. Joint Committee on Powder Diffraction Standards-International Center for Diffraction Date (JCPDS-ICDD), Card number 15.325 (1992).Google Scholar
14.Baermann, A., Guse, W., and Saalfeld, H., J. Cryst. Growth 79, 331 (1986).CrossRefGoogle Scholar
15.Rams, J., Tejeda, A., and Cabrera, J.M., J. Appl. Phys. 82, 994 (1997).CrossRefGoogle Scholar
16.Shenoy, M.R. and de la Rue, R.M., IEEE Proc. J. 139, 163 (1992).Google Scholar
17.Volkov, V.V., Egorysheva, A.V., Kargin, Y.F., and Skorikov, V.M., Inorg. Mater. 29, 1525 (1993).Google Scholar
18.Fork, D.K., Armani-Leplingard, F., and Kingston, J.J., MRS Bull. 21(7), 53 (1996).CrossRefGoogle Scholar
19.Delgado, J.C., Sánchez, F., Aguiar, R., Maniette, Y., Ferrater, C., and Varela, M., Appl. Phys. Lett. 68, 1048 (1996).CrossRefGoogle Scholar
20.Grabmaier, B.C. and Oberschmid, R., Phys. Status Solidi A 96, 199 (1986).CrossRefGoogle Scholar