Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-08T11:42:18.095Z Has data issue: false hasContentIssue false

Phase formation during reactive molybdenum-silicide formation

Published online by Cambridge University Press:  31 January 2011

C. M. Doland
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
R. J. Nemanich
Affiliation:
Department of Physics and Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-8202
Get access

Abstract

Silicide formation due to thermal treatment of thin (5–10 nm) molybdenum films on single-crystal, polycrystalline, and hydrogenated amorphous silicon substrates in the temperature range of 100 to 1000 °C was studied, with an emphasis on the initial interactions. The molybdenum deposition, annealing, and characterization using Raman scattering and Auger electron spectroscopy was carried out in UHV in order to minimize the effects of contaminants. Raman spectroscopy is used to distinguish between tetragonal (t-MoSi2) and hexagonal MoSi2 (h-MoSi2). The Raman spectrum of bulk tetragonal MoSi2 exhibits two prominent lines which are associated with the A1g (325 cm−1) and Eg (440 cm−1) modes. The only silicide phases detected in the thin film experiments were t-MoSi2 and h-MoSi2. While hexagonal MoSi2 does not appear in the bulk phase diagram, it is the first silicide phase formed in thin film reactions at a temperature between 300 and 400 °C. The nucleation temperature of h-MoSi2 was the same for Si〈100〉, Si〈111〉, and amorphous Si. Indirect evidence for disordered intermixing of silicon and molybdenum before nucleation of h-MoSi2 is found. Annealing at approximately 800 °C causes the silicide to transform from the hexagonal phase to the tetragonal phase for all substrates. Contaminants interfere with the formation of h-MoSi2 and also retard the transformation of h-MoSi2 to t-MoSi2. For the thin films considered here, the transformation to t-MoSi2 is accompanied by islanding of the silicide film. A lower interfacial energy between the silicon and silicide for h-MoSi2 has been proposed to explain the nucleation of h-MoSi2 before t-MoSi2.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Crowder, B. L. and Zirinsky, S., IEEE Trans. Electron Devices ED-26, 369 (1979).CrossRefGoogle Scholar
2Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980).CrossRefGoogle Scholar
3Mochizuki, T., Tsujimaru, T., Kashiwagi, M., and Nishi, Y., IEEE Trans. Electron Devices ED-27, 1431 (1980).CrossRefGoogle Scholar
4Chow, T. P. and Steckl, A. J., IEEE Trans. Electron Devices ED-30, 1480 (1983).CrossRefGoogle Scholar
5Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
6Murarka, S. P., J. Vac. Sci. Technol. B 2, 693 (1984).CrossRefGoogle Scholar
7Ottaviani, G., in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Pittsburgh, PA, 1984), p. 21.Google Scholar
8Rubloff, G. W., in Thin Films — Interfaces and Phenomena, edited by Nemanich, R. J., Ho, P. S., and Lau, S. S. (Mater. Res. Soc. Symp. Proc. 54, Pittsburgh, PA, 1986), p. 2.Google Scholar
9Joubert, P., Auvray, P., and Henry, L., Thin Solid Films 79, 235 (1981).CrossRefGoogle Scholar
10Oertel, B. and Sperling, R., Thin Solid Films 37, 185 (1976).CrossRefGoogle Scholar
11Guivarc'h, A., Auvray, P., Berthou, L., Cun, M. Le, Henoc, P., Pelous, G., and Martinez, A., J. Appl. Phys. 49, 233 (1978).CrossRefGoogle Scholar
12Schutz, R. J. and Testardi, L. R., Appl. Phys. Lett. 34, 797 (1979).CrossRefGoogle Scholar
13Yanagisawa, S. and Fukuyama, T., J. Electrochem. Soc. 127, 1150 (1980).CrossRefGoogle Scholar
14d'Heurle, F. M., Petersson, C. S., and Tsai, M. Y., J. Appl. Phys. 51, 5976 (1980).CrossRefGoogle Scholar
15Rice, M. J., Jr. and Sarma, K. R., J. Electrochem. Soc. 128, 1368 (1981).CrossRefGoogle Scholar
16Blokha, V. B., Gladkikh, N. T., Glushko, P. I., Zmii, V. I., Kartmazov, G. N., and Poltavtsev, N. S., Inorg. Mater. (Engl. Trans.) 18, 677 (1982). Transl. of Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 805 (1981).Google Scholar
17Nava, F., Majni, G., Cantoni, P., Pignatel, G., Ferla, G., Cappelletti, P., and Mori, F., Thin Solid Films 94, 59 (1982).CrossRefGoogle Scholar
18Shibata, K., Shima, S., and Kashiwagi, M., J. Electrochem. Soc. 129, 1527 (1982).CrossRefGoogle Scholar
19Suzuki, S., Ohkubo, Y., Matsuoka, F., and Itoh, T., Appl. Phys. Lett. 42, 797 (1983).CrossRefGoogle Scholar
20Perio, A., Torres, J., Bomchil, G., d'Avitaya, F. A., and Pantel, R., Appl. Phys. Lett. 45, 857 (1984).CrossRefGoogle Scholar
21Perio, A. and Torres, J., J. Appl. Phys. 59, 2760 (1986).CrossRefGoogle Scholar
22Cheng, J. Y., Cheng, H. C., and Chen, L. J., J. Appl. Phys. 61, 2218 (1987).CrossRefGoogle Scholar
23Hawkins, D. T. and Hultgren, R., in Metals Handbook, 8th ed. (ASM, Metals Park, OH, 1973), Vol. 8, pp. 321, 368.Google Scholar
24Lien, C-D. and Nicolet, M-A., J. Vac. Sci. Technol. B 2, 738 (1984).CrossRefGoogle Scholar
25Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983), p. 73.Google Scholar
26Walser, R. M. and Bene, R. W., Appl. Phys. Lett. 28, 624 (1976).CrossRefGoogle Scholar
27Pretorius, R., in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W. K. (Mater. Res. Soc. Symp. Proc. 25, Pittsburgh, PA, 1984), p. 15.Google Scholar
28Nemanich, R. J., Fulks, R. T., Stafford, B. L., and Plas, H. A. Vander, J. Vac. Sci. Technol. A 3, 938 (1985).CrossRefGoogle Scholar
29Nemanich, R. J. and Doland, C. M., J. Vac. Sci. Technol. B 3, 1142 (1985).CrossRefGoogle Scholar
30Nemanich, R. J., Doland, C. M., Fulks, R. T., and Ponce, F. A., in Thin Films — Interfaces and Phenomena, edited by Nemanich, R. J., Ho, P. S., and Lau, S. S. (Mater. Res. Soc. Symp. Proc. 54, Pittsburgh, PA, 1986), p. 255.Google Scholar
31Nemanich, R. J., Doland, C. M., and Ponce, F. A., J. Vac. Sci. Technol. B 5, 1039 (1987).CrossRefGoogle Scholar
32Connell, G. A. N., Nemanich, R. J., and Tsai, C. C., Appl. Phys. Lett. 36, 31 (1980).CrossRefGoogle Scholar
33Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).CrossRefGoogle Scholar
34Nemanich, R. J., Tsai, C. C., and Connell, G. A. N., Phys. Rev. Lett. 44, 273 (1980).CrossRefGoogle Scholar
35Tsai, C. C. and Nemanich, R. J., J. Non-Cryst. Solids 35 and 36, 1203 (1980).CrossRefGoogle Scholar
36Nemanich, R. J., Tsai, C. C., Thompson, M. J., and Sigmon, T. W., J. Vac. Sci. Technol. 19, 685 (1981).CrossRefGoogle Scholar
37Doland, C. M., Ph.D. Thesis, University of Houston, 1988.Google Scholar
38Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., Handbook of Auger Electron Spectroscopy (Physical Electronics, Eden Prairie, MN, 1976), pp. 511.Google Scholar
39Tokutaka, H., Nishimori, K., and Hayashi, H., Surf. Sci. 149, 349 (1985).CrossRefGoogle Scholar
40Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic Press, New York, 1985).Google Scholar
41Holloway, K., Do, K. B., and Sinclair, R., J. Appl. Phys. 65, 474 (1989).CrossRefGoogle Scholar
42Ley, L., in The Physics of Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucovsky, G. (Springer, New York, 1984), Vol. 56, pp. 61168.CrossRefGoogle Scholar
43Oura, K., Okada, S., and Hanawa, T., Appl. Phys. Lett. 35, 705 (1979).CrossRefGoogle Scholar
44Achete, C., Niehus, H., and Losch, W., J. Vac. Sci. Technol. B 3, 1327 (1985).CrossRefGoogle Scholar