Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T09:06:13.354Z Has data issue: false hasContentIssue false

Phase development of Bi-2212 superconductor: A time-resolved neutron powder diffraction investigation

Published online by Cambridge University Press:  31 January 2011

Dimitri N. Argyriou
Affiliation:
Science and Technology Center for Superconductivity and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Julie A. Garcia
Affiliation:
Science and Technology Center for Superconductivity and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
John F. Mitchell
Affiliation:
Science and Technology Center for Superconductivity and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. D. Jorgensen
Affiliation:
Science and Technology Center for Superconductivity and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D. G. Hinks
Affiliation:
Science and Technology Center for Superconductivity and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Time-resolved in situ neutron powder diffraction and Rietveld refinement have been used to study the synthesis of Bi-2212 from hydroxide precursors in a 2% O2 atmosphere. Bi-2212 was found to form within the temperature range 770–800 °C. Studies at 800 °C show that Bi-2212 grows rapidly at the expense of Bi-2201. Upon lowering the temperature to 500 °C and changing the atmosphere to Ar, a rapid increase in the lattice parameters was observed. We attribute this change to the loss of oxygen from the Bi-2212 lattice. The final material exhibited a Tc of 94 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nomura, K., Seido, M., Kitaguchi, H., Kumakura, H., Togano, K., and Maeda, K., Appl. Phys. Lett. 62, 2131 (1993).CrossRefGoogle Scholar
2.Yamamoto, A., Onoda, M., Takayama-Muromachi, E., and Izumi, F., Phys. Rev. B 42, 4228 (1990).CrossRefGoogle Scholar
3.Leyva, G., Acha, C., Levy, P., Polla, G., and M. A. R. de Benacar, Solid State Commun. 8, 887 (1991).CrossRefGoogle Scholar
4.Majewski, P., Su, H. L., and Aldinger, F., Physica C 229, 12 (1994).CrossRefGoogle Scholar
5.Mitchell, J. F., Garcia, J. A., and Hinks, D. G., Physica C 246, 126 (1995).CrossRefGoogle Scholar
6.Jorgensen, J. D., Faber, J.J., Carpenter, J. M., Crawford, R. K., Haumann, J.R., Hitterman, R. L., Kleb, R., Ostrowski, G. E., Rotella, F. J., and Worlton, T. G., J. Appl. Crystallogr. 22, 321 (1989).CrossRefGoogle Scholar
7.Faber, J. Jr., Revue Phys. Appl. 19, 643 (1984).CrossRefGoogle Scholar
8.Larson, A. C. and Von Dreele, R. B., General Structure Analysis System, Los Alamos National Laboratory Report No. LAUR 86–78 (1990).Google Scholar
9.Gao, Y., Coppens, P., Subramanian, M. A., and Sleight, A. W., Science 241, 954 (1988).CrossRefGoogle Scholar
10.Gao, Y., Lee, P., Ye, J., Bush, P., Petricek, V., and Coppens, P., Physica C 160, 431 (1989).CrossRefGoogle Scholar
11.Hill, R. J. and Howard, C. J., J. Appl. Crystallogr. 20, 467 (1987).CrossRefGoogle Scholar
12.Chen, F. H., Koo, H. S., and Tseng, T. Y., J. Mater. Sci. 25, 3338 (1990).CrossRefGoogle Scholar
13.Pham, A. Q., Maignan, A., Hervieu, M., Michel, C., Provost, J., and Raveau, B., Physica C 191, 77 (1992).CrossRefGoogle Scholar