Skip to main content Accessibility help
×
Home

Persistent photoconductivity in two-dimensional Mo1−x W x Se2–MoSe2 van der Waals heterojunctions

  • Xufan Li (a1), Ming-Wei Lin (a1), Alexander A. Puretzky (a1), Leonardo Basile (a2), Kai Wang (a3), Juan C. Idrobo (a3), Christopher M. Rouleau (a3), David B. Geohegan (a3) and Kai Xiao (a3)...

Abstract

Van der Waals (vdW) heterojunctions consisting of vertically-stacked individual or multiple layers of two-dimensional layered semiconductors, especially the transition metal dichalcogenides (TMDs), show novel optoelectronic functionalities due to the sensitivity of their electronic and optical properties to strong quantum confinement and interfacial interactions. Here, monolayers of n-type MoSe2 and p-type Mo1−x W x Se2 are grown by vapor transport methods, then transferred and stamped to form artificial vdW heterostructures with strong interlayer coupling as proven in photoluminescence and low-frequency Raman spectroscopy measurements. Remarkably, the heterojunctions exhibit an unprecedented photoconductivity effect that persists at room temperature for several days. This persistent photoconductivity is shown to be tunable by applying a gate bias that equilibrates the charge distribution. These measurements indicate that such ultrathin vdW heterojunctions can function as rewritable optoelectronic switches or memory elements under time-dependent photo-illumination, an effect which appears promising for new monolayer TMDs-based optoelectronic devices applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Persistent photoconductivity in two-dimensional Mo1−x W x Se2–MoSe2 van der Waals heterojunctions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Persistent photoconductivity in two-dimensional Mo1−x W x Se2–MoSe2 van der Waals heterojunctions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Persistent photoconductivity in two-dimensional Mo1−x W x Se2–MoSe2 van der Waals heterojunctions
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: xiaok@ornl.gov

References

Hide All
1. Bulter, S.Z., Hollen, S.M., Cao, L.Y., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Hong, S.S., Huang, J.X., Ismach, A.F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V.V., Robinson, R.D., Ruoff, R.S., Salahuddin, S., Shan, J., Shi, L., Spencer, M.G., Terrones, M., Windl, W., and Goldberger, J.E.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898 (2013).
2. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).
3. Geim, A.K. and Grigorieva, I.V.: van der Waals heterostructures. Nature 499, 419 (2013).
4. Fang, H., Battaglia, C., Carraro, C., Nemsak, S., Ozdol, B., Kang, J.S., Bechtel, H.A., Desai, S.B., Kronast, F., Unal, A.A., Conti, G., Conlon, C., Palsson, G.K., Martin, M.C., Minor, A.M., Fadley, C.S., Yablonovitch, E., Maboudian, R., and Javey, A.: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. U. S. A. 111, 6198 (2014).
5. Lee, C-H., Lee, G-H., van der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., and Kim, P.: Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676 (2014).
6. Cheng, R., Li, D., Zhou, H., Wang, C., Yin, A., Jiang, S., Liu, Y., Chen, Y., Huang, Y., and Duan, X.: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14, 5590 (2014).
7. Chiu, M-H., Zhang, C., Shiu, H-W., Chuu, C-P., Chen, C-H., Chang, C-Y.S., Chen, C-H., Chou, M-Y., Shih, C-K., and Li, L-J.: Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).
8. Rivera, P., Schaibley, J.R., Jones, A.M., Ross, J.S., Wu, S., Aivazian, G., Klement, P., Seyler, K., Clark, G., Ghimire, N.J., Yan, J., Mandrus, D.G., Yao, W., and Xu, X.: Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).
9. Hong, X., Kim, J., Shi, S-F., Zhang, Y., Jin, C., Sun, Y., Tongay, S., Wu, J., Zhang, Y., and Wang, F.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682 (2014).
10. Tongay, S., Fan, W., Kang, J., Park, J., Koldemir, U., Suh, J., Narang, D.S., Liu, K., Ji, J., Li, J., Sinclair, R., and Wu, J.: Tuning interlayer coupling in large-area heterostructures with CVD grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185 (2014).
11. Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., and Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301 (2015).
12. Shimakawa, K.: Persistent photocurrent in amorphous chalcogenides. Phys. Rev. B 34, 8703 (1986).
13. Okamoto, K., Sato, H., Saruwatari, K., Tamura, K., Kameda, J., Kogure, T., Umemura, Y., and Yamagishi, A.: Persistent phenomena in photocurrent of niobate nanosheet. J. Phys. Chem. C 111, 12827 (2007).
14. Feng, P., Mönch, I., Harazim, S., Huang, G., Mei, Y., and Schmidt, O.G.: Giant persistent photoconductivity in rough silicon nanomembranes. Nano Lett. 9, 3453 (2009).
15. Roy, K., Padmanabhan, M., Goswami, S., Sai, T.P., Ramalingam, G., Raghavan, S., and Ghosh, A.: Graphene-MoS2 hybrid structures of multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826 (2013).
16. Dang, X.Z., Wang, C.D., Yu, E.T., Boutros, K.S., and Redwing, J.M.: Persistent photoconductivity and defect levels in n-type AlGaN/GaN heterostructures. Appl. Phys. Lett. 72, 2745 (1998).
17. Horn, A., Katz, O., Bahir, G., and Salzman, J.: Surface states and persistent photocurrent in a GaN heterostructure. Semicond. Sci. Technol. 21, 933 (2006).
18. Tebano, A., Fabbri, E., Pergolesi, D., Balestrino, G., and Traversa, E.: Room-temperature giant persistent photoconductivity in SrTiO3/LaAlO3 heterostructures. ACS Nano 6, 1278 (2012).
19. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Garcia de Arquer, F.P., Gatti, F., and Koppens, F.H.L.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363 (2012).
20. Gong, Y., Liu, Z., Lupini, A.R., Shi, G., Lin, J., Najmaei, S., Lin, Z., Elias, A.L., Berkdemir, A., You, G., Terrones, H., Terrones, M., Vajtai, R., Pantelides, S.T., Pennycook, S.J., Lou, J., Zhou, W., and Ajayan, P.M.: Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14, 442 (2014).
21. Suh, J., Park, T-E., Lin, D-Y., Fu, D., Park, J., Jung, H.J., Chen, Y., Ko, C., Jang, C., Sun, Y., Sinclair, R., Chang, J., Tongay, S., and Wu, J.: Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 14, 6976 (2014).
22. Li, X., Lin, M-W., Huang, B., Basile, L., Hus, S.M., Puretzky, A.A., Chen, C-H., Lee, J., Wang, K., Idrobo, J.C., Yoon, M., Li, A.P., Rouleau, C.M., Sumpter, B.G., Geohegan, D.B., and Xiao, K.: Isoelectronic tungsten doping in monolayer MoSe2: From carrier type modulation to p–n homojunction. Unpublished.
23. Li, H., Duan, X., Wu, X., Zhuang, X., Zhou, H., Zhang, Q., Zhu, X., Hu, W., Ren, P., Gao, P., Ma, L., Fan, X., Wang, X., Xu, J., Pan, A., and Duan, X.: Growth of alloy MoS2xSe2(1−x) nanosheet with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756 (2014).
24. Zhang, M., Wu, J., Zhu, Y., Dumcenco, D.O., Hong, J., Mao, N., Deng, S., Chen, Y., Yang, Y., Jin, C., Chaki, S.H., Huang, Y‐S., Zhang, J., and Xie, L.: Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130 (2014).
25. Wang, X., Gong, Y., Shi, G., Chow, W.L., Keyshar, K., Ye, G., Vajtai, R., Lou, J., Liu, Z., Ringe, E., Tay, B.K., and Ajayan, P.M.: Chemical vapor deposition growth of crystalline monolayer MoSe2 . ACS Nano 8, 5125 (2014).
26. Puretzky, A.A., Liang, L., Li, X., Xiao, K., Wang, K., Mahjouri-Samani, M., Basile, L., Idrobo, J.C., Sumpter, B.G., Meunier, V., and Geohegan, D.B.: Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 9, 6333 (2015).
27. Puretzky, A.A., Liang, L., Li, X., Xiao, K., Sumpter, B.G., Meunier, V., and Geohegan, D.B.: Twisted MoSe2 bilayers with variable stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano (2016), doi: 10.1021/acsnano.5b07807.

Keywords

Persistent photoconductivity in two-dimensional Mo1−x W x Se2–MoSe2 van der Waals heterojunctions

  • Xufan Li (a1), Ming-Wei Lin (a1), Alexander A. Puretzky (a1), Leonardo Basile (a2), Kai Wang (a3), Juan C. Idrobo (a3), Christopher M. Rouleau (a3), David B. Geohegan (a3) and Kai Xiao (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed