Skip to main content Accessibility help

PbO-sensitized ZnO nanorod arrays for enhanced visible-light-driven photoelectrochemical performance

  • Jinwen Shi (a1), Penghui Guo (a1), Ya Liu (a1), Jinzhan Su (a1) and Liejin Guo (a1)...


In semiconductor system for solar-energy utilization by photoelectrochemical (PEC) water splitting, the effective absorption of visible light and the efficient separation and transfer of photogenerated charge carriers are still of key importance. In this manuscript, composite photoanodes of PbO sensitized ZnO nanorod arrays were prepared by a two-step hydrothermal process and used as anodes for PEC test under visible-light irradiation. The photocurrent achieved the highest value of 94 μA cm−2 at 0.8 V (versus Ag/AgCl electrode) when the amount of Pb source was optimized to form only a thin layer (a few nanometers) of PbO nanoparticles on the surfaces of ZnO nanorods. Such a nanostructure enabled the visible-light absorption, and also ensured the sufficient contact of PbO with ZnO to form junction with a type II band alignment and the sufficient contact with aqueous solution to form interfaces, thus facilitating the excitation, separation, and transfer of charge carriers to generate photocurrent and finally enhancing the PEC activity.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Tian, Z.R., Voigt, J.A., Liu, J., McKenzie, B., McDermott, M.J., Rodriguez, M.A., Konishi, H., and Xu, H.F.: Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821 (2003).
2. Yang, J.L., An, S.J., Park, W.I., Yi, G.C., and Choi, W.: Photocatalysis using ZnO thin films and nanoneedles grown by metal–organic chemical vapor deposition. Adv. Mater. 16, 1661 (2004).
3. Li, Z.G., Duan, G.T., Liu, G.Q., Dai, Z.F., Hu, J.L., Cai, W.P., and Li, Y.: Hierarchical ZnO films with microplate/nanohole structures induced by precursor concentration and colloidal templates, their superhydrophobicity, and enhanced photocatalytic performance. J. Mater. Res. 29, 115 (2013).
4. Jang, Y.J., Jang, J.W., Lee, J., Kim, J.H., Kumagai, H., Lee, J., Minegishi, T., Kubota, J., Domen, K., and Lee, J.S.: Selective co production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. Energy Environ. Sci. 8, 3597 (2015).
5. Zou, Z.G., Ye, J.H., Sayama, K., and Arakawa, H.: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625 (2001).
6. Khan, S.U.M., Al-Shahry, M., and Ingler, W.B. Jr.: Efficient photochemical water splitting by a chemically modified n-TiO2 . Science 297, 2243 (2002).
7. Shi, J.W., Ye, J.H., Zhou, Z.H., Li, M.T., and Guo, L.J.: Hydrothermal synthesis of Na0.5La0.5TiO3–LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution. Chem.–Eur. J. 17, 7858 (2011).
8. Sunahara, K., Furube, A., Katoh, R., Mori, S., Griffith, M.J., Wallace, G.G., Wagner, P., Officer, D.L., and Mozer, A.J.: Coexistence of femtosecond- and nonelectron-injecting dyes in dye-sensitized solar cells: Inhomogeniety limits the efficiency. J. Phys. Chem. C 115, 22084 (2011).
9. Ziółek, M., Martín, C., Cohen, B., Garcia, H., and Douhal, A.: Virtues and vices of an organic dye and Ti-doped MCM-41 based dye-sensitized solar cells. J. Phys. Chem. C 115, 23642 (2011).
10. Senevirathna, M.K.I., Pitigala, P.K.D.D.P., and Tennakone, K.: Water photoreduction with Cu2O quantum dots on TiO2 nano-particles. J. Photochem. Photobiol., A 171, 257 (2005).
11. Lee, Y.L., Chi, C.F., and Liau, S.Y.: CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem. Mater. 22, 922 (2009).
12. Hagfeldt, A., Boschloo, G., Sun, L.C., Kloo, L., and Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010).
13. Banerjee, S., Mohapatra, S.K., Das, P.P., and Misra, M.: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).
14. Sung, T.K., Kang, J.H., Jang, D.M., Myung, Y., Jung, G.B., Kim, H.S., Jung, C.S., Cho, Y.J., Park, J., and Lee, C.L.: CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes. J. Mater. Chem. 21, 4553 (2011).
15. Leschkies, K.S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J.E., Carter, C.B., Kortshagen, U.R., Norris, D.J., and Aydil, E.S.: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793 (2007).
16. Cao, X.B., Chen, P., and Guo, Y.: Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation. J. Phys. Chem. C 112, 20560 (2008).
17. Wang, M., Jiang, J.G., Liu, G.J., Shi, J.W., and Guo, L.J.: Controllable synthesis of double layered tubular CdSe/ZnO arrays and their photoelectrochemical performance for hydrogen production. Appl. Catal., B 138–139, 304 (2013).
18. Chung, J., Myoung, J., Oh, J., and Lim, S.: Synthesis of a ZnS shell on the ZnO nanowire and its effect on the nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 114, 21360 (2010).
19. Wang, X.N., Zhu, H.J., Xu, Y.M., Wang, H., Tao, Y., Hark, S., Xiao, X.D., and Li, Q.: Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties. ACS Nano 4, 3302 (2010).
20. Cho, I.S., Chen, Z.B., Forman, A.J., Kim, D.R., Rao, P.M., Jaramillo, T.F., and Zheng, X.L.: Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978 (2011).
21. Vithal, M., Nachimuthu, P., Banu, T., and Jagannathan, R.: Optical and electrical properties of PbO–TiO2, PbO–TeO2, and PbO–CdO glass systems. J. Appl. Phys. 81, 7922 (1997).
22. Ekuma, E.C., Esabunor, E.V., and Osarolube, E.: Optoelectronic properties and band gap narrowing in chemically PbO doped TiO2 thin film. Optoelectron. Adv. Mater., Rapid Commun. 5, 960 (2011).
23. Iwaszuk, A. and Nolan, M.: Lead oxide-modified TiO2 photocatalyst: Tuning light absorption and charge carrier separation by lead oxidation state. Catal. Sci. Technol. 3, 2000 (2013).
24. Bhachu, D.S., Sathasivam, S., Carmalt, C.J., and Parkin, I.P.: PbO-modified TiO2 thin films: A route to visible light photocatalysts. Langmuir 30, 624 (2013).
25. Guo, P.H., Jiang, J.G., Shen, S.H., and Guo, L.J.: ZnS/ZnO heterojunction as photoelectrode: Type II band alignment towards enhanced photoelectrochemical performance. Int. J. Hydrogen Energy 38, 13097 (2013).
26. Hill, R.J.: Refinement of the structure of orthorhombic PbO (massicot) by rietveld analysis of neutron powder diffraction data. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 41, 1281 (1985).
27. Thomas, J.M. and Tricker, M.J.: Electronic structure of the oxides of lead. Part 2.-an XPS study of bulk rhombic PbO, tetragonal PbO, β-PbO2 and Pb3O4 . J. Chem. Soc., Faraday Trans. 2 71, 329 (1975).
28. Keezer, R.C., Bowman, D.L., and Becker, J.H.: Electrical and optical properties of lead oxide single crystals. J. Appl. Phys. 39, 2062 (1968).
29. Terpstra, H.J., de Groot, R.A., and Haas, C.: Electronic structure of the lead monoxides: Band-structure calculations and photoelectron spectra. Phys. Rev. B: Condens. Matter Mater. Phys. 52, 11690 (1995).
30. Djurišić, A.B., Leung, Y.H., Tam, K.H., Ding, L., Ge, W.K., Chen, H.Y., and Gwo, S.: Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl. Phys. Lett. 88, 103107 (2006).
31. Zhang, X.Y., Qin, J.Q., Xue, Y.N., Yu, P.F., Zhang, B., Wang, L.M., and Liu, R.P.: Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 4596 (2014).
32. Kudo, A., Omori, K., and Kato, H.: A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459 (1999).
33. Shi, J.W., Ye, J.H., Li, Q.Y., Zhou, Z.H., Tong, H., Xi, G.C., and Guo, L.J.: Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: Topotactic synthesis and enhanced photocatalytic activity. Chem.–Eur. J. 18, 3157 (2012).
34. Yang, B. and Luca, V.: Enhanced long-wavelength transient photoresponsiveness of WO3 induced by tellurium doping. Chem. Commun. 37, 4454 (2008).


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Shi supplementary material
Shi supplementary material

 Word (234 KB)
234 KB

PbO-sensitized ZnO nanorod arrays for enhanced visible-light-driven photoelectrochemical performance

  • Jinwen Shi (a1), Penghui Guo (a1), Ya Liu (a1), Jinzhan Su (a1) and Liejin Guo (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.