Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-04T12:13:50.766Z Has data issue: false hasContentIssue false

Pb()O3-type Perovskites: Part I. Pair-correlation Theory of Order-disorder Phase Transition

Published online by Cambridge University Press:  26 July 2012

Hyun M. Jang*
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physics/Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Su-Chan Kim
Affiliation:
Department of Materials Science and Engineering, and Laboratory for Physics/Chemistry of Dielectric Materials, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The limitation of the long-range order parameter and the necessity of the short-range order parameter for the thermodynamic description of Pb()O3-type perovskites are discussed. Based on the discussion, a statistical thermodynamic model that takes into account the configuration of the neighboring B-site ions (B′ and B″ cations) was developed. A pair-correlation approximation was used in the calculation of the configurational entropy and the long-range coulombic interaction energy between the nearest B-site ions. The theoretical calculations using Pb(Sc1/2Ta1/2)O3 (PST) and Pb(Sc1/2Nb1/2)O3 (PSN) systems indicate that the short-range order parameter persists over a wide range of temperatures examined (0–1800 K) and that there possibly occur consecutive long-range order-disorder transitions in the configuration of B-site cations. The possibility of the existence of short-range ordering above the long-range order-disorder transition temperature was also examined using the annealed PSN specimen as a typical example of Pb()O3-type perovskites.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Smolenskii, G. A., J. Phys. Soc. Jpn. 28 (Suppl.), 26 (1970).Google Scholar
2.Stenger, C. G. F., Scholten, F. L., and Burggraaf, A. J., Solid State Commun. 32, 989 (1979).CrossRefGoogle Scholar
3.Stenger, C. G. F. and Burggraaf, A. J., Phys. Status Solidi (a) 61, 275 (1980).CrossRefGoogle Scholar
4.Stenger, C. G. F. and Burggraaf, A. J., Phys. Status Solidi (a) 61, 653 (1980).CrossRefGoogle Scholar
5.Setter, N. and Cross, L. E., J. Appl. Phys. 51, 4356 (1980).CrossRefGoogle Scholar
6.Setter, N. and Cross, L. E., J. Mater. Sci. 15, 2478 (1980).CrossRefGoogle Scholar
7.Cross, L. E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
8.Randall, C. A., Bhalla, A. S., Shrout, T. R., and Cross, L. E., J. Mater. Res. 5, 829 (1990).CrossRefGoogle Scholar
9.Caranoni, C., Lampin, P., Siny, I., Zheng, J. G., Li, Q., Kang, Z. C., and Boulesteix, C., Phys. Status Solidi (a) 130, 25 (1992).CrossRefGoogle Scholar
10.Randall, C. A., Barber, D. J., Whatmore, R. W., and Groves, P., J. Mater. Sci. 21, 4456 (1986).CrossRefGoogle Scholar
11.Randall, C. A., Markgraf, S. A., and Bhalla, A. S., Phys. Rev. B 40, 413 (1989).CrossRefGoogle Scholar
12.Baba-Kishi, K. Z., Cressey, G., and Cernik, R. J., J. Appl. Crystallogr. 25, 477 (1992).CrossRefGoogle Scholar
13.Chen, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 72, 593 (1989).CrossRefGoogle Scholar
14.Harmer, M. P., Chen, J., Peng, P., Chan, H. M., and Smyth, D. M., Ferroelectrics 97, 263 (1989).CrossRefGoogle Scholar
15.Hilton, A. D., Barber, D. J., Randall, C. A., and Shrout, T. R., J. Mater. Sci. 25, 3461 (1990).CrossRefGoogle Scholar
16.Hilton, A. D., Randall, C. A., Barber, D. J., and Shrout, T. R., Ferroelectrics 93, 379 (1989).CrossRefGoogle Scholar
17.Randall, C. A., Barber, D. J., Groves, P., and Whatmore, R. W., J. Mater. Sci. 23, 3678 (1988).CrossRefGoogle Scholar
18.Zhang, X-W., Wang, Q., and Gu, B-L., J. Am. Ceram. Soc. 74, 2846 (1991).CrossRefGoogle Scholar
19.Bragg, W. L. and Williams, E. J., Proc. Roy. Soc. A 145, 699 (1934).Google Scholar
20.Bethe, H. A., Proc. Roy. Soc. A 150, 552 (1935).Google Scholar
21.Kikuchi, R., Phys. Rev. 81, 988 (1951).CrossRefGoogle Scholar
22.Barker, J. A., Proc. Roy. Soc. A 216, 45 (1953).Google Scholar
23.Sanchez, J. M. and de Fontaine, D., Phys. Rev. B 17, 2926 (1978).CrossRefGoogle Scholar
24. Landolt–Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, Vol. 16, Ferroelectric and Related Substances, Subvolume a: Oxides, edited by K-H., Hellwege and Hellwege, A. M. (Springer-Verlag, Berlin, Heidelberg, New York, 1981).Google Scholar
25.Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. B 26, 1046 (1970).CrossRefGoogle Scholar
26.Kim, S-C. and Jang, H. M., J. Mater. Res. 12, 21272133 (1997).CrossRefGoogle Scholar
27.Shrout, T. R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
28.Dai, X., DiGiovanni, A., and Viehland, D., J. Appl. Phys. 74, 3399 (1993).CrossRefGoogle Scholar
29.Dai, X., Xu, Z., and Viehland, D., Philos. Mag. B 70, 33 (1994).CrossRefGoogle Scholar
30.Yoon, M-S. and Jang, H. M., J. Appl. Phys. 77, 3991 (1995).CrossRefGoogle Scholar
31.Yoon, M-S., Jang, H. M., and Kim, S., Jpn. J. Appl. Phys. 34, 1916 (1995).CrossRefGoogle Scholar
32.Chu, F., Reaney, I. M., and Setter, N., J. Appl. Phys. 77, 1671 (1995).CrossRefGoogle Scholar
33.Chu, F., Setter, N., and Tagantsev, A. K., J. Appl. Phys. 74, 5129 (1993).CrossRefGoogle Scholar