Skip to main content Accessibility help
×
Home

Optimization of anti-solvent engineering toward high performance perovskite solar cells

  • Jian Li (a1), Ruihan Yang (a1), Longcheng Que (a1), Yafei Wang (a1), Feng Wang (a1), Jiang Wu (a2) and Shibin Li (a1)...

Abstract

Anti-solvent treatment assisted crystallization is currently one of the most widely used methods to obtain high-quality perovskite films ascribed to its great operability. However, choosing a proper anti-solvent toward high-quality perovskite film for perovskite solar cells (PSCs) remains elusive. In this study, we qualitatively evaluate the impact of anti-solvent treatment on the grain growth and phase composition of perovskite by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometer, and UV-vis absorption measurement, etc. The results demonstrate that the chemical groups in anti-solvents also affect the formation of perovskites, and anti-solvents with a low boiling point and good polarity contribute to the superior efficiency and reproducibility of PSCs. The device prepared using ether as an anti-solvent exhibits the best power conversion efficiency of 18.47%. The results indicate a new path toward selecting an ideal anti-solvent to improve the performance of PSCs.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: quelongcheng@gmail.com

Footnotes

Hide All
b)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Joint Research Centre: Available at: http://eC.europA.eu/jrc/eN. (accessed March 15, 2018).
2.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009).
3.Yang, W.S., Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., and Noh, J.H.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 13761379 (2017).10.1126/science.aan2301
4.Zhao, D., Yu, Y., Wang, C., Liao, W., Shrestha, N., Grice, C.R., Cimaroli, A.J., Guan, L., Ellingson, R.J., Zhu, K., Zhao, X., Xiong, R-G., and Yan, Y.: Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).
5.Bu, T., Wu, L., Liu, X., Yang, X., Zhou, P., Yu, X., Qin, T., Shi, J., Wang, S., and Li, S.: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7, 1700576 (2017).
6.Li, S., Zhang, P., Wang, Y., Sarvari, H., Liu, D., Wu, J., Yang, Y., and Wang, Z.: Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res. 10, 10921103 (2017).
7.Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., Ji, L., Liu, C., Ahmad, W., and Chen, Z.D.: Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 30, 1703737 (2018).
8.Tavakoli, M.M., Tavakoli, R., Nourbakhsh, Z., Waleed, A., Virk, U.S., and Fan, Z.: High efficiency and stable perovskite solar cell using ZnO/rGO QDs as an electron transfer layer. Adv. Mater. Interfaces 3, 1500790 (2016).
9.Bi, D., Gao, P., Scopelliti, R., Oveisi, E., Luo, J., Grätzel, M., Hagfeldt, A., and Nazeeruddin, M.K.: High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 28, 29102915 (2016).
10.Zheng, L., Zhang, D., Ma, Y., Lu, Z., Chen, Z., Wang, S., Xiao, L., and Gong, Q.: Morphology control of the perovskite films for efficient solar cells. Dalton Trans. 44, 1058210593 (2015).
11.Wang, Y., Liu, D., Zhang, P., Zhang, T., Ahmad, W., Ying, X., Wang, F., Li, J., Chen, L., and Wu, J.: Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing. Sci. China Mater. 61, 15361548 (2018).
12.Wang, Y., Zhang, T., Zhang, P., Liu, D., Ji, L., Chen, H., Chen, Z.D., Wu, J., and Li, S.: Solution processed PCBM-CH3NH3PbI3 heterojunction photodetectors with enhanced performance and stability. Org. Electron. 57, 263268 (2018).
13.Zhang, T., Wu, J., Zhang, P., Waseem, A., Wang, Y., Mahdi, A., Chen, H., Gao, C., Chen, Z.D., Wu, Z., and Li, S.: High speed and stable solution-processed triple cation perovskite photodetectors. Adv. Opt. Mater. 6, 1701341 (2018).
14.Xiao, Z., Kerner, R.A., Zhao, L., Tran, N.L., Lee, K.M., Koh, T.W., Scholes, G.D., and Rand, B.P.: Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11, 108 (2017).
15.Liu, M., Johnston, M.B., and Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).10.1038/nature12509
16.Wu, Y., Li, F., Han, C., Wang, X., Li, H., Cai, M., Zhou, Z., Noda, T., and Han, L.: Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017).
17.Burschka, J., Pellet, N., Moon, S.J., Humphrybaker, R., Gao, P., Nazeeruddin, M.K., and Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).10.1038/nature12340
18.Liu, Y., Zhang, Y., Yang, Z., Yang, D., Ren, X., Pang, L., and Liu, S.F.: Thinness-and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 28, 92049209 (2016).
19.Wang, Y., Li, S., Zhang, P., Liu, D., Gu, X., Sarvari, H., Ye, Z., Wu, J., Wang, Z., and Chen, Z.D.: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%. Nanoscale 8, 1965419661 (2016).
20.Rong, Y., Tang, Z., Zhao, Y., Zhong, X., Venkatesan, S., Graham, H., Patton, M., Jing, Y., Guloy, A.M., and Yao, Y.: Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 7, 1059510599 (2015).
21.Manda, X., Fuzhi, H., Wenchao, H., Yasmina, D., Ye, Z., Joanne, E., Angus, G.W., Udo, B., Yi Bing, C., and Leone, S.: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 53, 98989903 (2014).
22.Paek, S., Schouwink, P., Athanasopoulou, E.N., Cho, K.T., Grancini, G., Lee, Y., Zhang, Y., Stellacci, F., Nazeeruddin, M.K., and Gao, P.: From Nano- to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29, 34903498 (2017).
23.Wang, Y., Wu, J., Zhang, P., Liu, D., Zhang, T., Ji, L., Gu, X., Chen, Z.D., and Li, S.: Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy 39, 616625 (2017).
24.Pathak, S.K., Sepe, A., Sadhanala, A., Deschler, F., Haghighirad, A., Sakai, N., Goedel, K.C., Stranks, S.D., Noel, N.K., and Price, M.: Atmospheric influence upon crystallization and electronic disorder and its impact on the photo-physical properties of organic–inorganic perovskite solar cells. ACS Nano 9, 23112320 (2015).
25.Chen, J., Xiong, Y., Rong, Y., Mei, A., Sheng, Y., Jiang, P., Hu, Y., Li, X., and Han, H.: Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy 27, 130137 (2016).
26.Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., and Hayase, S.: All-solid perovskite solar cells with HOCO–R–NH3+I anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118, 1665116659 (2014).
27.Zuo, L., Gu, Z., Ye, T., Fu, W., Wu, G., Li, H., and Chen, H.: Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 26742679 (2015).
28.Shih, Y.C., Lan, Y.B., Li, C.S., Hsieh, H.C., Wang, L., Wu, C.I., and Lin, K.F.: Amino-acid-induced preferential orientation of perovskite crystals for enhancing interfacial charge transfer and photovoltaic performance. Small 13, 1604305 (2017).
29.Dong, J., Xu, X., Shi, J., Li, D., Luo, Y., Meng, Q., and Chen, Q.: Suppressing charge recombination in ZnO-nanorod-based perovskite solar cells with atomic-layer-deposition TiO2. Chin. Phys. Lett. 32, 078401 (2015).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed