Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T08:02:45.142Z Has data issue: false hasContentIssue false

On the oxidation resistance of superhard Ti–Si–C–N coatings

Published online by Cambridge University Press:  31 January 2011

Yan Guo
Affiliation:
State-Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Shengli Ma
Affiliation:
State-Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Kewei Xu*
Affiliation:
State-Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Tom Bell
Affiliation:
International Research Center for Surface Engineering of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Xiaoying Li
Affiliation:
Department of Metallurgy and Materials, The University of Birmingham, Birmingham B15 2TT, United Kingdom
Hanshan Dong
Affiliation:
Department of Metallurgy and Materials, The University of Birmingham, Birmingham B15 2TT, United Kingdom
*
a)Address all correspondence to this author. e-mail: kwxu@mail.xjtu.edu.cn
Get access

Abstract

The oxidation behavior of three types of plasma-enhanced chemical vapor deposition (PECVD) processed Ti–Si–C–N coatings with silicon content ranging from 4.3 to 11.6 at.% has been investigated at high temperatures. Systematic characterization was conducted to study the evolution of composition, phase constituents, hardness, surface morphologies, microstructures, and grain size during oxidation. A two-stage oxidation process was observed between 700 and 1000 °C for all three coatings. Experimental results indicate that a superhardness of 40 GPa can be maintained up to 700, 800, and 850 °C for 4.3, 7.4, and 11.6 at.% Si coatings, respectively; the dual-phased 7.4 and 11.6 at.% Si coatings show a better oxidation resistance than the single-phased 4.3 at.% Si coating. On the basis of the results, a mechanism is proposed to explain the relationship between the nanostructure and oxidation behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sun, Z., Zhou, Y.Li, M.: High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater. 49, 4347 2001CrossRefGoogle Scholar
2Kim, K.H.Lee, S.H.: Comparative studies of TiN and Ti1–xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N4/H2/Ar gas mixture. Thin Solid Films 307, 113 1997CrossRefGoogle Scholar
3Veprek, S., Reiprich, S.Li, S.: Superhard nanocrystalline composite materials: The c-TiN/a–Si3N4 system. Appl. Phys. Lett. 66, 2640 1995CrossRefGoogle Scholar
4Zhang, C.H., Liu, Z-J., Li, K.Y., Shen, Y.G.Luo, J.B.: Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion-beam-assisted deposition. J. Appl. Phys. 95, 1460 2004CrossRefGoogle Scholar
5Choi, J.B., Cho, K., Lee, M-H.Kim, K.H.: Effect of Si content and free Si on oxidation behavior of Ti–Si–N coating layers. Thin Solid Films 447–448, 365 2004CrossRefGoogle Scholar
6Li, Y.S., Shimada, S., Kiyono, H.Hirose, A.: Synthesis of Ti–Al–Si–N nanocomposite films using liquid injection PECVD from alkoxide precursors. Acta Mater. 54, 2041 2006CrossRefGoogle Scholar
7Zou, B., Huang, C., Chen, M., Gu, M.Liu, H.: Study of the mechanical properties, toughening and strengthening mechanisms of Si3N4/Si3N4w/TiN nanocomposite ceramic tool materials. Acta Mater. 55, 4193 2007CrossRefGoogle Scholar
8Zhang, R.F.Veprek, S.: On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system. Mater. Sci. Eng., A 424, 128 2006CrossRefGoogle Scholar
9Ma, S.L., Ma, D.Y., Guo, Y., Xu, B., Wu, G.Z., Xu, K.W.Chu, P.K.: Synthesis and characterization of super hard, self-lubricating Ti–Si–C–N nanocomposite coatings. Acta Mater. 55, 6350 2007CrossRefGoogle Scholar
10Ma, S.L., Xu, K.W.He, J.W.: Parametric effects of residual stress in pulse dc plasma enhanced CVD TiN coatings. Surf. Coat. Technol. 142–144, 1023 2001CrossRefGoogle Scholar
11Sahoo, T., Tripathy, S.K., Mohapatra, M., Anand, S.Das, R.P.: X-ray diffraction and microstructural studies on hydrothermally synthesized cubic barium titanate from TiO2-Ba(OH)2-H2O system. Mater Lett. 61, 1323 2007CrossRefGoogle Scholar
12Sambasivan, S.Petuskey, W.T.: Phase chemistry in the Ti–Si–N system: Thermo chemical review with phase stability diagrams. J. Mater. Res. 9, 2362 1994CrossRefGoogle Scholar
13Guo, Y., Ma, S., Xu, K., Bell, T., Li, X.Dong, H.: Transmission electron microscopy microstructural characterization of Ti– Si–C–N coatings. J. Mater. Res. 23, 198 2008CrossRefGoogle Scholar
14Guo, Y., Ma, S., Xu, K.Bell, T.: Nanostructured phase transition of super-hard Ti–Si–C–N coatings. Nanotechnology 19, 561 2008CrossRefGoogle Scholar
15Lu, Y.H., Shen, Y.G., Zhou, Z.F.Li, K.Y.: Effects of nitrogen content on microstructure and oxidation behaviors of Ti–B–N nanocomposite thin films. J. Vac. Sci. Technol., A 24, 340 2006CrossRefGoogle Scholar
16Hofmann, S.: Formation and diffusion properties of oxide films on metals and on nitride coatings studied with Auger electron spectroscopy and x-ray photoelectron spectroscopy. Thin Solid Films 193–194, 648 1990CrossRefGoogle Scholar