Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-29T07:55:48.752Z Has data issue: false hasContentIssue false

On the intergranular coupling in soft nanocrystalline materials

Published online by Cambridge University Press:  31 January 2011

J. M. González
Affiliation:
Departamento de Propiedades Ópticas, Magnéticas y de Transporte, Instituto de Ciencia de Materiales, CSIC, Serrano 144, 28006 Madrid, Spain
N. Murillo
Affiliation:
Departamento de Física de Materiales, Facultad de Químicas, 20080 San Sebastián, Spain
J. González
Affiliation:
Departamento de Física de Materiales, Facultad de Químicas, 20080 San Sebastián, Spain
J. M. Blanco
Affiliation:
Departamento de Física Aplicada I, Escuela Universitaria de Ingeniería Técnica Industrial, 20010 San Sebastián, Spain
J. Echeberría
Affiliation:
Departamento de Materiales, CEIT, San Sebastián, Spain
Get access

Abstract

The magnetic softness of nanocrystalline materials prepared from amorphous precursors is attributed to the average of the local magnetocrystalline anisotropy of the individual crystallites. In the present paper we have studied the effective magnetic anisotropy of Fe-based nanocrystalline samples with different microstructures. These microstructures were produced by using different heating rates when crystallizing the precursor material by means of continuous heating treatments. From the results of our study of the magnetic properties of the samples, carried out from the measurement of the bias field dependence of the transverse susceptibility, it was possible to discern the occurrence of intergranular coupling and to evaluate the typical dimensions of the coupled units. Since these dimensions were larger than the characteristic length of the microstructure, we suggest that the enhancement of the soft properties is linked to the decrease of the microstructure-magnetization interactions originating in large units of coupled magnetic moments.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).Google Scholar
2.Yoshizawa, Y. and Yamauchi, K., J. Jpn. Inst. Metals 63, 241 (1989).Google Scholar
3.Herzer, G., IEEE Trans. Magn. Mag-26, 1397 (1990).Google Scholar
4.Herzer, G., Mater. Sci. Eng. A 133, 1 (1991).Google Scholar
5.González, J. M., Vázquez, M., and Vicent, J. L., J. Magn. Magn. Mater. 54–57, 261 (1986).Google Scholar
6.González, J. M., Liniers, M., Rivero, G., Ascasibar, E., and Vicent, J. L., J. Magn. Magn. Mater. 72, 187 (1988).Google Scholar
7.Hoffmann, H., IEEE Trans. Magn. Mag-4, 32 (1968).Google Scholar
8.Hoffmann, H., IEEE Trans. Magn. Mag-15, 1215 (1979).Google Scholar
9.González, J. M., Cebollada, F., and Hernando, A., J. Appl. Phys. 73, 6943 (1993).Google Scholar
10.Martín, V. E., Bernardi, J., Fidler, J., Cebollada, F., and González, J. M., J. Alloys and Compounds 101, 127 (1993).Google Scholar
11.Hoffmann, H. and Fujii, T., J. Magn. Magn. Mater. 128, 395 (1993).Google Scholar
12.Cohen, M. S., in Handbook of Thin Film Technology, edited by Massel, L. I. and Glang, R. (McGraw-Hill Book Company, New York, 1970), pp. 1764.Google Scholar