Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-19T18:51:30.385Z Has data issue: false hasContentIssue false

On the evolution of structure and composition in sol-gel-derived lead zirconate titanate thin layers

Published online by Cambridge University Press:  03 March 2011

Charles D.E. Lakeman*
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Zhengkui Xu
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
David A. Payne
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
*
a)Current address: Department of Materials, University of California, Santa Barbara, Santa Barbara, California 93106.
Get access

Abstract

The evolution of structure and chemical distribution in sol-gel derived Pb(Zr0.53T10.47)O3 thin layers was monitored by x-ray diffraction, analytical electron microscopy, and diffuse reflectance Fourier transform infrared spectroscopy. Electron microscopy confirmed the as-deposited coatings were amorphous with short-range order. Medium-range order developed on heat treatment, and chemical heterogeneity was observed at the nanoscale. The extent of compositional heterogeneity decreased with increasing temperature. Above 500 °C, the coatings crystallized into an intermediate phase which converted to the perovskite phase above 600 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brinker, C. J. and Scherer, G. R., Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
2Uhlmann, D. R., Zelinski, B. J., Warner, S. B., Fabes, B. D., and Doyle, W. F., in Science of Ceramic Chemical Processing, edited by Hench, L.L. and Ulrich, D.R. (John Wiley and Sons, New York, 1986), p. 173.Google Scholar
3Klemperer, W. G., Mainz, V. V., and Millar, D.M., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 325.Google Scholar
4Eichorst, D. J., Payne, D. A., Wilson, S. R., and Howard, K. E., Inorg. Chem. 29, 1458 (1994).Google Scholar
5Campion, J. F., Maurin, J. K., Payne, D. A., Chae, H. K., and Wilson, S. R., Inorg. Chem. 30, 3244 (1991).CrossRefGoogle Scholar
6Ma, L. and Payne, D. A., Chem. Mater. 6, 875 (1994).Google Scholar
7Chae, H. K., Payne, D. A., Xu, Z., and Ma, L., Chem. Mater. 6, 1589 (1994).CrossRefGoogle Scholar
8Sengupta, S. S., Ma, L., Adler, D. L., and Payne, D. A., J. Mater. Res. 10, 1345 (1995).CrossRefGoogle Scholar
9Hsueh, C-C. and Mecartney, M. L., J. Mater. Res. 6, 2208 (1991).Google Scholar
10Kwok, C. K. and Desu, S. B., Appl. Phys. Lett. 60, 1430 (1992).CrossRefGoogle Scholar
11Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
12Tuttle, B. A., Headley, T. J., Bunker, B. C., Schwartz, R. W., Zender, T. J., Hernandez, C. L., Goodnow, D. C., Tissot, R. J., Michael, J., and Carim, A. H., J. Mater. Res. 7, 1876 (1992).CrossRefGoogle Scholar
13Budd, K. D., Dey, S. K., and Payne, D. A., Br. Ceram. Proc. 36, 107 (1985).Google Scholar
14Lakeman, C. D. E. and Payne, D. A., J. Am. Ceram. Soc 75, 3091 (1992).Google Scholar
15Wagner, C. N. J., J. Non-Cryst. Solids 31, 1 (1978).Google Scholar
16Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed. (John Wiley and Sons, New York, 1987), p. 223.Google Scholar
17Li, S., Condrate, R. A. Sr., and Spriggs, R. M., J. Can. Ceram. Soc. 57, 61 (1988).Google Scholar
18Seraphin, S., Zhou, D., Teowee, G., Boulton, J. M., and Uhlmann, D.R., Ferroelectric Thin Films II, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 369.Google Scholar
19Hsueh, C-C. and Mecartney, M. L., Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 219.Google Scholar
20Goral, J. P., Huffman, M., and Al-Jassim, M. M., Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 225Google Scholar
21Huffman, M., Goral, J. P., Al-Jassim, M.M., Mason, A. R., and Jones, K.M., Thin Solid Films 193/194, 17 (1990).CrossRefGoogle Scholar
22Last, J. T., Phys. Rev. 105, 1740 (1957).Google Scholar
23Lakeman, C. D. E., unpublished work.Google Scholar
24Akiyama, Y., Kimura, S., and Fujimura, I., Jpn. J. Appl. Phys. 32, 4154 (1993).CrossRefGoogle Scholar
25JCPDS File, Card No. 9–356.Google Scholar
26Wilkinson, A. P., Speck, J. S., Cheetham, A. K., Natarajan, S., and Thomas, J. M., Chem. Mater. 6, 750 (1994).Google Scholar
27Subramanian, M. A., Aravanudan, G., and Subba Rao, G. V., Prog. Solid State Chem. 15, 55 (1983).Google Scholar
28Speck, J. S., private discussion.Google Scholar
29Hirano, S. and Kato, K., J. Non-Cryst. Solids 100, 538 (1988).CrossRefGoogle Scholar
30Frey, M. H. and Payne, D. A., in Sol-Gel Processing and Applications, edited by Attia, Y. A. (Plenum Publishing, New York, 1994), p. 155.CrossRefGoogle Scholar
31Frey, M. H. and Payne, D. A., Chem. Mater. 7, 123 (1995).CrossRefGoogle Scholar
32Frey, M. H. and Payne, D. A., Appl. Phys. Lett. 63, 2573 (1993).Google Scholar