Skip to main content Accessibility help
×
Home

On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide

  • Spyros Gallis (a1), Vasileios Nikas, Eric Eisenbraun, Mengbing Huang and Alain E. Kaloyeros (a1)...

Abstract

The composition, structure, morphology, and optical characteristics of hydrogenated amorphous silicon-oxycarbide (a-SiCxOyHz) materials were investigated as a function of experimental processing conditions and post-deposition thermal treatment. Thermal chemical vapor deposition (TCVD) was applied to the growth of three different types of a-SiCxOyHz films, namely, SiC-like (SiC1.08O0.07H0.21), Si-C-O (SiC0.50O1.20H0.22), and SiO2-like (SiC0.20O1.70H0.24). The resulting films were subsequently annealed at temperatures ranging from 500 °C to 1100 °C for 1 h in an argon atmosphere. The composition, structure, and morphology of as-deposited and post-annealed films were characterized by Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), nuclear-reaction analysis (NRA), and scanning electron microscopy. Corresponding optical properties were assessed by spectroscopic ultraviolet-visible ellipsometry (UV-VIS-SE). These studies led to the identification of an optimized process window for the growth of Er doped silicon oxycarbide (SiC0.5O1.0:Er) thin film with strong room-temperature photoluminescence emission measured around 1540 nm within a broad (460 nm to 600 nm) wavelength band. Associated modeling studies showed that the effective cross section for Er excitation in the SiC0.5O1.0:Er matrix was approximately four orders of magnitude larger than its analog for direct optical excitation of Er ions.

Copyright

Corresponding author

a) Current address: International Business Machines, Hopewell Junction, New York 10598
b) Address all correspondence to this author. e-mail: akaloyeros@uamail.albany.edu

References

Hide All
1Grill, A.: Plasma enhanced chemical vapor deposited SiCOH dielectrics: From low-k to extreme low-k interconnect materials. J. Appl. Phys. 93, 1785 (2003).
2Chiang, C-C., Chen, M-C., Li, L-J., Wu, Z-C., Jang, S-M., and Liang, M-S.: Physical and barrier properties of amorphous silicon-oxycarbide deposited by PECVD from octamethylcyclotetra-siloxane. J. Electrochem. Soc. 151(9), G612 (2004).
3Wang, M.R., Xie, Rusli J.L., Babu, N., Li, C.Y., and Rakesh, K.: Study of oxygen influences on carbon doped silicon oxide low-k thin films deposited by plasma enhanced chemical vapor deposition. J. Appl. Phys. 96, 829 (2004).
4Salib, M., Liao, L., Jones, R., Morse, M., Liu, A., Samara-Rubio, D., Alduino, D., and Paniccia, M.: Silicon photonics. Intel Technol. J. 8, 143 (2004).
5Pavesi, L. and Lockwood, D.J.: Silicon Photonics (Springer, Berlin, 2004).
6Jalall, B.: Silicon lasers. APS News 15(3), 7 (2006).
7Kim, Y-H., Hwang, M.S., Kim, H.J., Kim, J.Y., and Lee, Y.: Infrared spectroscopy study of low-dielectric constant fluorine-incorporated and carbon-incorporated silicon oxide films. J. Appl. Phys. 90, 3367 (2001).
8Gallis, S., Huang, M., Efstathiadis, H., Eisenbraun, E., Nyein, E., Hommerich, U., and Kaloyeros, A.E.: Photoluminescence in erbi-um doped silicon oxycarbide thin films. Appl. Phys. Lett. 87, 091901 (2005).
9Gallis, S., Huang, M., and Kaloyeros, A.E.: Efficient energy transfer from silicon oxycarbide matrix to Er ions via indirect excitation mechanisms. Appl. Phys. Lett. 90, 161914 (2007).
10Gallis, S., Nikas, V., Huang, M., Eisenbraun, E., and Kaloyeros, A.E.: Comparative study of the effects of thermal treatment on the optical properties of hydrogenated amorphous silicon-oxycarbide. J. Appl. Phys. 102, 024302 (2007).
11Tolstoy, V.P., Chernyshova, I.V., and Skryshevsky, V.A.: Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, New York, 2003), Chap. 5.
12Socrates, G.: Infrared Characteristic Group Frequencies (Wiley, New York, 2001).
13Besling, W.F.A., Goossens, A., Meester, B., and Schoonman, J.: Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films. J. Appl. Phys. 83, 544 (1998).
14Lisovskii, I.P., Litovchenko, V.G., Lozinskii, V.G., and Steblovskii, G.I.: IR spectroscopic investigation of SiO2 film stucture. Thin Solid Films 213, 164 (1992).
15Calcagno, L., Musumeci, P., Roccaforte, F., Bongiorno, C., and Foti, G.: Crystallization mechanism of amorphous silicon carbide. Appl. Surf. Sci. 184, 123 (2001).
16Gallis, S., Futschik, U., Sherwood, W., Hayes, S., Fountzoulas, C.G., Castracane, J., Kaloyeros, A.E., and Efstathiadis, H.: Thermal chemical vapor deposition of silicon carbide films as protective coatings for microfluidic structures, in Proceedings of the Materials Research Society Symposium, Silicon Carbide 2002—Materials, Processing and Devices, edited by Saddow, S.E., Larkin, D.J., Saks, N.S., and Schoener, A. (Mater. Res. Soc. Symp. Proc. 672, Warrendale, PA, 2002), K2.4.
17Demichells, F., Pirri, C.F., and Tresso, E.: Influence of doping on the structural and optoelectronic properties of amorphous and microcrystalline silicon carbide. J. Appl. Phys. 72, 1327 (1992).
18Fang, C.J., Gruntz, K.J., Ley, L., Cardona, M., Demond, F.J., Müller, G., and Kalbitzer, S.: The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques. J. Non-Cryst. Solids 35–36, 255 (1980).
19Basa, D.K. and Smith, F.W.: Annealing and crystallization processes in a hydrogenated amorphous Si-C alloy film. Thin Solid Films 192, 121 (1990).
20Fujimoto, F., Ootuka, A., Komaki, K-I., Iwata, Y., Yamane, I., Yamashita, H., Hashimoto, Y., Tawada, Y., Nishimura, K., Okamoto, H., and Hamakawa, Y.: Hydrogen content in a-SiC:H films prepared by plasma decomposition of silane and methane or ethylene. Jpn. J. Appl. Phys., Part 1 23, 810 (1984).
21Nakazawa, K., Ueda, S., Kumeda, M., Morimoto, A., and Shimizu, T.: NMR and IR studies on hydrogenated amorphous Si1–xCx films.Jpn. J. Appl. Phys., Part 1 21, L176 (1982).
22Smith, K.L. and Black, K.M.: Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC. J. Vac. Sci. Technol., A 2, 744 (1984).
23Choi, W.K., Ong, T.Y., Tan, L.S., Loh, F.C., and Tan, K.L.: Infrared and x-ray photolectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films. J. Appl. Phys. 83, 4968 (1998).
24Bell, F.G. and Ley, L.: Photoemission study of SiOx (0≤ x ≤2) alloys. Phys. Rev. B 37, 8383 (1988).
25Wolfe, D.M., Hinds, B.J., Wang, F., Lucovsky, G., Ward, B.L., Xu, M., Nemanich, R.J., and Maher, D.M.: Thermochemical stability of silicon-oxygen-carbon alloy thin films: A model sys-tem for chemical and structural relaxation at SiC-SiO2 interfaces. J. Vac. Sci. Technol., A 17, 2170 (1999).
26Briggs, D. and Beamson, G.: High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, New York, 1992).
27Esposito, L., Ottaviani, G., Carollo, E., and Bacchetta, M.: Thermal stability of low-dielectric constant porous silica films. Appl. Phys. Lett. 87, 262909 (2005).
28Das, D., Farjas, J., Roura, P., Viera, G., and Bertran, E.: Thermal oxidation of polymer-like amorphous SixCyHwOz nanoparticles. Diamond Relat. Mater. 10, 1295 (2001).
29Roura, P., Farjas, J., Rath, C., Serra-Miralles, J., Bertran, E., and Cabarrocas, P. Roca i: Calorimetry of dehydrogenation and dangling-bond recombination in several hydrogenated silicon materials. Phys. Rev. B 73, 085203 (2006).
30Garcia-Caurel, E., Viera, G., Bertran, E., and Canillas, A.: Study of the optical and structural properties of silicon-carbon nanometric powder using infrared phase modulated ellipsometry and electron microscopy. Phys. Status Solidi A 175, 373 (1999).
31Stesmans, A.: Dissociation kinetics of hydrogen-passivated P b defects at the (111)Si/SiO2 interface. Phys. Rev. B 61, 8393 (2000).
32Cui, H., Carter, R.J., Moore, D.L., Peng, H-G., Gidley, D.W., and Burke, P.A.: Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films. J. Appl. Phys. 97, 113302 (2005).
33Montero, I., Galán, L., Najmi, O., and Albella, J.M.: Disorder-induced vibration-mode coupling in SiO2 films observed under normal-incidence infrared radiation. Phys. Rev. B 50, 4881 (1994).
34Lucovsky, G., Mantini, M.J., Srivastava, J.K., and Irene, E.A.: Low temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy. J. Vac. Sci. Technol., B 5, 530 (1987).
35Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., and Yanovitskaya, Z.S.: Low-dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).
36Sun, C.Q.: A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72, 1706 (1998).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed