Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-26T13:53:41.615Z Has data issue: false hasContentIssue false

Nucleation, growth, and aggregation of gold on polyimide surfaces

Published online by Cambridge University Press:  31 January 2011

Y. Travaly
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
L. Zhang
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
Y. Zhao
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
R. Pfeffer
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
K. Uhrich
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
F. Cosandey
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
E. Garfunkel
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
T. E. Madey
Affiliation:
Laboratory for Surface Modification, Rutgers—The State University of New Jersey, Piscataway, New Jersey 08854
Get access

Abstract

The growth of ultrathin gold films on polyimide (PI) surfaces and the stability of the films upon thermal annealing have been studied using a combination of various techniques. With scanning electron microscopy (SEM) we observe that, at room temperature, the Au film initially grows by nucleation of compact Au islands. With increasing metal coverage, the clusters partially agglomerate to produce a wormlike structure. Finally, percolation, hole-filling, and continuous thin-film growth are observed. To evaluate the thermal stability of the Au/PI system, annealing at various temperatures was performed on films that displayed the wormlike structure. SEM results indicate strong temperature-dependent changes in film morphology. Finally, from our SEM data we determine contact angles, allowing us to estimate interfacial and adhesion energies.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, W.W. and Ho, P.S., MRS Bull. 22(10), 1923 (1997).CrossRefGoogle Scholar
2.Hacker, N.P., MRS Bull. 22(10), 3338 (1997).CrossRefGoogle Scholar
3.Bartha, J.W., Hahn, P.O., LeGoues, F.K., and Ho, P.S., J. Vac. Sci. Technol., A 3, 1390 (1985);CrossRefGoogle Scholar
Ho, P.S., Hahn, P.O., Bartha, J.W., Rubloff, G.W., LeGoues, F.K., and Silverman, B.D., J. Vac. Sci. Technol., A 3, 739 (1985);CrossRefGoogle Scholar
Pireaux, J.J., Vermeersch, M., Grégoire, C., Thiry, P.A., Caudano, R., and Clarke, T.C., J. Chem. Phys. 88, 3353 (1988).CrossRefGoogle Scholar
4.Tromp, R.M., LeGoues, F. and Ho, P.S., J. Vac. Sci. Technol., A 6, 2200 (1988);Google Scholar
Mack, R.G., Grosman, E., and Unertl, W.N., J. Vac. Sci. Technol., A 8, 3827 (1990);CrossRefGoogle Scholar
Strunskus, T., Hahn, C., Frankel, D., and Grunze, M., J. Vac. Sci. Technol., A 9, 1272 (1991);CrossRefGoogle Scholar
Dunn, D.S. and Grant, J.L., J. Vac. Sci. Technol., A 7, 1046 (1986).Google Scholar
5.Chou, N.J. and Tang, C.H., J. Vac. Sci. Technol., A 2, 751 (1984).CrossRefGoogle Scholar
6.Haight, R., White, R.C., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technol., A 6, 2188 (1988).CrossRefGoogle Scholar
7.Pertsin, A.J. and Pashunin, Y.M., Appl. Surf. Sci. 47, 115 (1991).CrossRefGoogle Scholar
8.Ohuchi, F.S. and Frelich, S.C., J. Vac. Sci. Technol., A 8, 3827 (1990); Polymer 28, 1908 (1987).Google Scholar
9.Girardeaux, C., Druet, E., Demoncy, P., and Delamar, M., J. Electron Spectrosc. Relat. Phenom. 70, 11 (1994).CrossRefGoogle Scholar
10.Strunskus, T., Grunze, M., Kochendoerfer, G., and Woll, Ch., Langmuir 12, 27122725 (1996);CrossRefGoogle Scholar
Chou, N.J., Dong, D.W., Kim, J., and Liu, A.C., J. Electrochem. Soc. 131, 2335 (1984).CrossRefGoogle Scholar
11.Meyer, H.M., Anderson, S.G., Atanasoska, Lj., and Weaver, J.H., J. Vac. Sci. Technol., A 6, 1002 (1988).CrossRefGoogle Scholar
12.Doolittle, L.R., Nucl. Instrum. Methods, B 9, 334 (1985).CrossRefGoogle Scholar
Doolittle, L.R., Nucl. Instrum. Methods, B 15, 227 (1986).CrossRefGoogle Scholar
13.Lamb, R.N., Baxter, J., Grunze, M., Kong, C.W., and Unertl, W.N., Langmuir 4, 249256 (1988).CrossRefGoogle Scholar
14.Zhang, L., Cosandey, F., Persaud, R., and Madey, T.E., Surf. Sci. (in press).Google Scholar
15.Smithson, R.W.L, McClure, D.J., and Evans, D.F., Thin Solid Films 307, 110112 (1997).CrossRefGoogle Scholar
16.Lide, E.D.R, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 19911992).Google Scholar
17.Johnson, C., Mao, J., and Wunder, S.L., Polyimides Materials, Chemistry and Characterization, edited by Feger, C., Khojasteh, M.M., and McGrath, J.E. (Elsevier Science Publishers B.V., Amsterdam, 1989), p. 347Google Scholar
18.Laius, L.A. and Tsapovetsky, M.I., Polyamic Acids and Polyimides, Synthesis, Transformations, and Structure, edited by Bessonov, M.I. and Zubkov, V.A. (CRC Press, Boca Raton, FL, 1993), Chap. 2.Google Scholar
19.Ogawa, T. and Yamane, H., Polyimides Materials, Chemistry and Characterization, edited by Feger, C., Khojasteh, M.M., and McGrath, J.E. (Elsevier Science Publishers B.V., Amsterdam, 1989), p. 601.Google Scholar
20.Yu, X., Duxbury, P.M., Jeffers, G., and Dubson, M.A., Phys. Rev. B 44(23), 13163 (1991).CrossRefGoogle Scholar
21.Stiegler, J., von Kaenel, Y., Cans, M., and Blank, E., J. Mater. Res. 11, 716 (1996).CrossRefGoogle Scholar
22.Droulas, J.L., Jugnet, Y., and Duc, T.M., Metallized Plastics 3: Fundamental and Applied Aspects, edited by Mittal, K.L. (Plenum Press, New York, 1992), p. 123.CrossRefGoogle Scholar
23.Travaly, Y., Bertrand, P., Rignanese, G-M., and Gonze, X., J. Adhes. 66(1–4), 339355 (1998).CrossRefGoogle Scholar
24.Calderone, A., Lazzaroni, R., Bredas, J.L., Le, Q.T., and Pireaux, J.J., J. Chem. Phys. 102(10), 4299 (1995).CrossRefGoogle Scholar
25.Campbell, C.T., Surf. Sci. Rep. 27, 1 (1997).CrossRefGoogle Scholar
26.Miller, K.T., Lange, F.F., and Marshall, D.B., J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
27.Bertrand, P., Lambert, P., and Travaly, Y., Nucl. Instrum. Methods Phys. Res., Sect. B 131, 7178 (1997).CrossRefGoogle Scholar