Skip to main content Accessibility help

Nucleation and growth of Al2O3/metal composites by oxidation of aluminum alloys

  • O. Salas (a1), H. Ni (a2), V. Jayaram (a3), K.C. Vlach (a4), C.G. Levi (a5) and R. Mehrabian (a6)...


The nucleation and growth mechanisms during high temperature oxidation of liquid Al−3% Mg and Al−3% Mg−3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.



Hide All
1.Newkirk, M.S., Urquhart, A.W., Zwicker, H. R., and Breval, E., J. Mater. Res. 1, 8189 (1986).
2.Newkirk, M. S., Lesher, H. D., White, D. R., Kennedy, C. R., Urquhart, A. W., and Claar, T. D., Ceram. Eng. Sci. Proc. 8, 879885 (1987).
3.Thouless, M. D. and Evans, A. G., Acta Metall. 36 (3), 517522 (1988).
4.Vlach, K. C., Salas, O., Ni, H., Jayaram, V., Levi, C. G., and Mehrabian, R., J. Mater. Res. 6, 19821995 (1991).
5. The microscope experimental setup was initially developed by Urquhart, A. W. and A. S. Nagelberg of Lanxide Co. (unpublished research).
6.Nagelberg, A. S., Solid State Ionics 32/33, 783788 (1989).
7.Aghajanian, M. K., MacMillan, N. H., Kennedy, C. R., Luszcz, S. J., and Roy, R., J. Mater. Sci. 24, 658670 (1989).
8.Preston, G. D. and Bircumshaw, L. L., Philos. Mag. 20, 706720 (1935).
9.Dobinski, S. and Niesluchowski, M., Nature 144, 510511 (1939).
10.Smeltzer, W. W., J. Electrochem. Soc. 105, 6771 (1958).
11.Cochran, C. N. and Sleppy, W. C., J. Electrochem. Soc. 108, 322327 (1961).
12.Hine, R. A. and Guminski, R. D., J. Inst. Met. 89, 417422 (1961).
13.Lea, C. and Ball, J., Appl. Surf. Sci. 17, 344362 (1984).
14.Rönnhult, T., Rilby, U., and Olefjord, I., Mater. Sci. Eng. 42, 329336 (1980).
15.Belitskus, D. L., Oxid. Met. 3, 313317 (1971).
16.Belitskus, D.L., Oxid. Met. 8, 303307 (1974).
17.Stucki, F., Erbudak, M., and Kostorz, G., Appl. Surf. Sci. 27, 394400 (1987).
18.Drouzy, M. and Mascre, C., Metall. Rev. 3, 2546 (1969).
19.Thiele, W., Aluminium 38, 705715, 780–786 (1962).
20.Balicki, S., Prace Inst. Hutnic. 10, 208213 (1958).
21.Balicki, S. and Leitl, J., Prace Inst. Hutnic. 11, 7174 (1959).
22.Mal'tsev, M. V., Chistyakov, Yu. D., and Tsypin, M. I., Izv. Akad. Nauk SSSR, Ser. Fiz. (English transl.) 20, 747750 (1956).
23.Drouzy, M. and Fontaine, D., Rev. de Metall. 775781 (1970).
24.Drouzy, M. and Richard, M., Fonderie 29, 121128 (1974).
25.Haginoya, I. and Fukusako, T., J. Jpn. Inst. Light Met. 24, 364 (1974), republished in English in Trans. Jpn. Inst. Met. 24, 613–619 (1983).
26.Cochran, C. N., Belitskus, D. L., and Kinosz, D. L., Metall. Trans. B 8B, 323332 (1977).
27.Freti, S., Bornand, J.D., and Buxmann, K., Light Metal Age 40 (5–6), 12, 1516 (1982).
28.Radin, A. Ya., Svoistva Rasplavl. Met., Tr. Soveshch. Teor. Liteinykh Protessov, 16th, 116–122 (1972); Chemical Abstracts 82, 90567 (1975).
29.Kahl, W. and Fromm, E., Metall. Trans. B 16B, 4751 (1985).
30.Tiwari, B. L., Metall. Trans. A 18A, 16451651 (1987).
31.Murray, J. L. and McAlister, A. J., Bull. Alloy Phase Diagrams 5, 7484, 90–91 (1984).
32.Robie, R. A., Hemingway, B. S., and Fisher, J. R., U. S. Geol. Survey Bull., 1452 (1979).
33.Carter, R. E., J. Am. Ceram. Soc. 44 (3), 116 (1961).
34.Schmalzried, H. and Laqua, W., Oxid. Met. 15 (3/4), 339353 (1981).
35.Vieira, J. M. and Brook, R. J., in Advanced Ceramics, edited by Kingery, W. D. (Am. Ceram. Soc., Columbus, OH, 1984), Vol. 10, pp. 438463.
36.Weirauch, D. A., J. Mater. Res. 3, 729739 (1988).
37.Rao, Y. K. and Belton, G. R., in Chemical Metallurgy—A Tribute to Carl Wagner, edited by Gokcen, N. A. (TMS-AIME, Warrendale, PA, 1981), pp. 7596.
38.Nayeb-Hashemi, A. A. and Clark, J. B., Bull. Alloy Phase Diagrams 5, 584592, 637–638 (1984).
39.Kuznetsov, V. G. and Makarov, E. S., Compt. Rend. Acad. Sci. URSS 23, 245249 (1939).
40.Badaeva, T. A., Doklady Akad. Nauk SSSR 64, 533536 (1949).
41.Metals Handbook, 8th ed. (ASM, Metals Park, OH, 1973), Vol. 8, pp. 396397.

Nucleation and growth of Al2O3/metal composites by oxidation of aluminum alloys

  • O. Salas (a1), H. Ni (a2), V. Jayaram (a3), K.C. Vlach (a4), C.G. Levi (a5) and R. Mehrabian (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed