Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T07:45:38.374Z Has data issue: false hasContentIssue false

Nucleation and amorphization of radiation-produced phases in a modified austenitic stainless steel during Ni-ion irradiation

Published online by Cambridge University Press:  31 January 2011

E. H. Lee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6376
E. A. Kenik
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6376
Get access

Abstract

The nucleation and amorphization of radiation-induced (G) and radiation-enhanced (η) phases in a silicon- and titanium-modified austenitic stainless steel have been studied under nickel-ion irradiation. These silicon- and nickel-enriched phases form under high-temperature (950 K) irradiation as the result of radiation-induced segregation to radiation-produced interstitial dislocation loops. Availability of carbon promotes the formation of η phase relative to G phase. Under lower temperature (450 K) irradiation, G and η phases are amorphized without significant change in composition of metallic elements. Two carbide phases (MC, M23C6) remain crystalline for the same irradiation conditions. The amorphization of the silicides may result from (1) radiation damage increasing their free energy above that of the amorphous state or (2) direct formation of the amorphous phase in the damage cascade.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mansur, L. K., Philos. Mag. 44, 867 (1981).CrossRefGoogle Scholar
2Lee, E. H., Rowcliffe, A. F., and Mansur, L. K., J. Nucl. Mater. 103 and 104, 1475 (1981).CrossRefGoogle Scholar
3Lee, E. H., Maziasz, P. J., and Rowcliffe, A. F., in Phase Stability During Irradiation, edited by Holland, J. R., Mansur, L. K., and Potter, D. I. (AIME, New York, 1981), p. 191.Google Scholar
4Arkell, D. R. and Pfeil, P. C., J. Nucl. Mater. 12, 145 (1964).CrossRefGoogle Scholar
5Sizmann, R., J. Nucl. Mater. 69 and 70, 386 (1978).CrossRefGoogle Scholar
6Lewis, M. B., Packan, N. H., Wells, G. F., and Buhl, R. A., Nucl. Instrum. Methods 167, 233 (1979).CrossRefGoogle Scholar
7Kenik, E. A., Scripta Metall. 10, 733 (1976).CrossRefGoogle Scholar
8Kenik, E. A., J. Nucl. Mater. 85 and 86, 659 (1979).CrossRefGoogle Scholar
9Williams, T. M. and Titchmarch, J. M., J. Nucl. Mater. 98, 223 (1981).CrossRefGoogle Scholar
10Thomas, L. E., in Proceedings of the 41st Annual Meeting Electron Microscopy Society of America, edited by Bailey, C. W. (San Francisco Press, San Francisco, 1983), p. 384.Google Scholar
11Thomas, L. E., Trans. Am. Nucl. Soc. 28, 151 (1978).Google Scholar
12Yang, W. J. S., Brager, H. R., and Garner, F. A., in Phase Stability During Irradiation, edited by Holland, J. R., Mansur, L. K., and Potter, D. I. (AIME, New York, 1981), p. 257.Google Scholar
13Barbu, A. and Ardell, A. J., Scripta Metall. 9, 1233 (1975).CrossRefGoogle Scholar
14Okamoto, P. R. and Wiedersich, H., J. Nucl. Mater. 53, 336 (1974).CrossRefGoogle Scholar
15Okamoto, P. R. and Rehn, L. E., J. Nucl. Mater. 83, 2 (1979).Google Scholar
16Kenik, E. A., in Materials Problem Solving with the TEM, Materials Research Society Symposium Proceedings, edited by Hobbs, L. W., Westmacott, K. H., and Williams, D. B. (MRS, Pittsburgh, PA, 1986), Vol. 62, p. 209.Google Scholar
17Brimhall, J. L., Kissinger, H. E., and Chariot, L. A., Radiat. Eff. 77, 273 (1983).CrossRefGoogle Scholar
18Howe, L. M. and Rainville, M. H., J. Nucl. Mater. 68, 215 (1977).CrossRefGoogle Scholar
19Nelson, R. S., Hudson, J. A., and Mazey, D. J., J. Nucl. Mater. 44, 318 (1972).CrossRefGoogle Scholar
20Wilkes, P., J. Nucl. Mater. 83, 166 (1979).CrossRefGoogle Scholar
21Bloch, J., J. Nucl. Mater. 6, 203 (1962).Google Scholar
22Walker, D. G., J. Nucl. Mater. 37, 48 (1970).CrossRefGoogle Scholar
23Naguib, N. M. and Kelley, R., Radiat. Eff. 25, 1 (1975).CrossRefGoogle Scholar
24Gilbert, R. W., Griffiths, M., and Carpenter, G. J. C., J. Nucl. Mater. 135, 265 (1985).CrossRefGoogle Scholar
25Spiegel, F. X., Bardos, D., and Beck, P. A., Trans. Metall. Soc. AIME 227, 575 (1963).Google Scholar
26Westgren, A., Jernkontorets Ann. 177, 1 (1933).Google Scholar
27Stadelmaier, H. H, Developments in the Structural Chemistry of Alloy Phase (Plenum, New York, 1969).Google Scholar
28Moine, P., Eymery, J. P., Gaboriaud, R. J., and Delafond, J., Nucl. Instrum. Methods 209-210, 267 (1983).CrossRefGoogle Scholar
29Brimhall, J. L., Kissinger, H. E., and Pelton, A. R., Proc. Mater. Res. Soc. Symp. 27, 163 (1984).CrossRefGoogle Scholar