Skip to main content Accessibility help

A novel approach of preparing zinc adipate as β-nucleating agent for polypropylene engineering

  • Wenli Peng (a1), Wenxia Liu (a2), Wenxue Zhang (a2), Ke Li (a1), Xin Liu (a1), Zhenbin Chen (a1), Zhenghua Tang (a3) and Zhen Liu (a4)...


In this work, two types of zinc adipate β-nucleating agents, Adi-Zn(OH)2 (1:1) and Adi-ZnO (1:1), for polypropylene (PP) were prepared and their performances were evaluated and compared with commercial β-nucleating agent (named CNA). Results showed that Adi-Zn(OH)2 (1:1) was more effective in promoting PP to form β-crystals and improving the impact strength of PP in the range of nucleating agent addition (0–0.4 wt%). Based on these findings, the ratio of adipic acid to zinc hydroxide and the nonisothermal crystallization kinetics of the optimum ratio of adipic acid to zinc hydroxide were systematically studied; results showed that at 0.2 wt%, Adi-Zn(OH)2 (1:2), the nucleated PP displayed the highest impact strength, which was 2.6 times that of pure PP and 42% higher than that of CNA. Besides, Adi-Zn(OH)2 (1:2) could also afford to induce the formation of a high content of β-crystals and shorten the crystallization half time (t1/2) and accelerate the crystallization of PP.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Wang, N., Niu, H., and Li, Y.: A novel catalytic way of comprising a β-nucleating agent in isotactic polypropylene: Catalyst design strategy and polymerization-assisted dispersion. Polymer 113, 259 (2017).
2.Zhou, S., Zhao, S., and Xin, Z.: Preparation and foamability of high melt strength polypropylene based on grafting vinyl polydimethylsiloxane and styrene. Polym. Eng. Sci. 55, 251 (2015).
3.Misztal-Faraj, B.: A simple model of plate-like crystallization with constant plate thickness. J. Mater. Res. 28, 1224 (2013).
4.Chen, J-w., Dai, J., Yang, J-h., Huang, T., Zhang, N., and Wang, Y.: Annealing-induced crystalline structure and mechanical property changes of polypropylene random copolymer. J. Mater. Res. 28, 3100 (2013).
5.Latiff, A.A., Mohamad, N., Jeefferie, A.R., Nasir, M.H.M., Siti Rahmah, S., Mahamood, M.A., Chua Abdullah, M.I.H., and Ab Maulod, H.E.: Correlation of wear characteristics with hardness of recycled carbon fiber prepreg reinforced polypropylene composites. J. Mater. Res. 31, 1908 (2016).
6.Tate, D., Adams, T., and Burns, B.: Assessment of the impact on the automotive industry of a potential ban on the use of chlorine chemistry. J. Appl. Polym. Sci. 60, 1839 (1997).
7.Guidetti, G.P., Rigosi, G.L., and Marzola, R.: The use of polypropylene in pipeline coatings. Prog. Org. Coat. 27, 79 (1996).
8.Valentina, S., Ignazio, B., Santina, R., Urszula, T., and Marco, D.R.: Gas permeability and thermal behavior of polypropylene films used for packaging minimally processed fresh-cut potatoes: A case study. J. Food Sci. 77, E264 (2012).
9.Zhang, Y.F. and Xin, Z.: Effects of substituted aromatic heterocyclic phosphate salts on properties, crystallization, and melting behaviors of isotactic polypropylene. J. Appl. Polym. Sci. 100, 4868 (2010).
10.Kotek, J., Raab, M., Baldrian, J., and Grellmann, W.: The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J. Appl. Polym. Sci. 85, 1174 (2010).
11.Wei, Z., Zhang, W., Chen, G., Liang, J., Yang, S., Wang, P., and Liu, L.: Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J. Therm. Anal. Calorim. 102, 775 (2010).
12.Busico, V. and Cipullo, R.: Microstructure of polypropylene. Prog. Polym. Sci. 26, 443533 (2001).
13.Claudio, D.R. and Finizia, A.: Structural-mechanical phase diagram of isotactic polypropylene. J. Am. Chem. Soc. 128, 11024 (2006).
14.Aboulfaraj, M., G’Sell, C., Ulrich, B., and Dahoun, A.: In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polymer 36, 731 (1995).
15.Zhao, S., Cai, Z., and Xin, Z.: A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49, 2745 (2008).
16.Kang, J., He, J., Chen, Z., Yu, H., Chen, J., Yang, F., Cao, Y., and Xiang, M.: Investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotube composites nucleated with β-nucleating agent. J. Therm. Anal. Calorim. 119, 1769 (2015).
17.Varga, J. and Menyhárd, A.: Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40, 2422 (2007).
18.Cao, Y., Feng, J., and Wu, P.: DSC and morphological studies on the crystallization behavior of β-nucleated isotactic polypropylene composites filled with Kevlar fibers. J. Therm. Anal. Calorim. 103, 339 (2011).
19.Sun, J., Li, Q., Yao, X.J., and Hu, J.S.: A nematic liquid crystalline polymer as highly active novel β-nucleating agent for isotactic polypropylene. J. Mater. Sci. 48, 4032 (2013).
20.Stocker, W., Karakaya, B., Schürmann, B.L., Rabe, J.P., and Schlüter, A.D.: Ordered dendritic nanorods with a poly(p-phenylene) backbone. J. Am. Chem. Soc. 120, 7691 (1998).
21.Keith, H.D.: Banding in polyethylene and other spherulites. Macromolecules 29, 7776 (1996).
22.Varga, J. and Karger-Kocsis, J.: Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J. Polym. Sci., Part B: Polym. Phys. 34, 657 (2015).
23.Yang, Z., Chen, C., Liang, D., Zhang, Z., and Mai, K.: Melting characteristic and β-crystal content of β-nucleated polypropylene/polyamide 6 alloys prepared using different compounding methods. Polym. Int. 58, 1366 (2010).
24.Yang, G., Li, X., Chen, J., Yang, J., Huang, T., Liu, X., and Wang, Y.: Crystallization behavior of isotactic polypropylene induced by competition action of β nucleating agent and high pressure. Colloid Polym. Sci. 290, 531 (2012).
25.Zhang, Z., Chen, C., Wang, C., Guo, J., and Mai, K.: Nonisothermal crystallization kinetics of isotactic polypropylene nucleated with a novel supported β-nucleating agent. J. Therm. Anal. Calorim. 103, 311 (2011).
26.Leugering, V.H.J.: Einfluß der kristallstruktur und der überstruktur auf einige eigenschaften von polypropylen. Makromol. Chem. 109, 204 (1967).
27.Li, X., Hu, K., Ji, M., Huang, Y., and Zhou, G.: Calcium dicarboxylates nucleation of β-polypropylene. J. Appl. Polym. Sci. 86, 633 (2010).
28.Dou, Q.: Effect of calcium salts of aliphatic dicarboxylic acids on the formation of β crystalline form in isotactic poly(propylene). Adv. Mater. Res. 391–392, 875 (2012).
29.Varga, J.: Beta-modification of isotactic polypropylene: Preparation, structure, processing, properties, and application. J. Macromol. Sci., Part B: Phys. 41, 1121 (2002).
30.Yang, Y., Zhang, W., Qin, W., Xin, Z., Zhao, S., Chen, L., and Zhou, S.: The nucleation effect of self-dispersed β-nucleating agent in ethylene-propylene block copolymerized polypropylene. Colloid Polym. Sci. 296, 1627 (2018).
31.Zhao, S., Gong, H., Yu, X., Xin, Z., Sun, S., Zhou, S., and Shi, Y.: A highly active and selective β-nucleating agent for isotactic polypropylene and crystallization behavior of β-nucleated isotactic polypropylene under rapid cooling. J. Appl. Polym. Sci. 133 , 18 (2016).
32.Yang, Y., Xin, Z., Zhao, S., Shi, Y., Zhou, S., Zhou, J., and Ye, C.: Nucleation effects of zinc adipate as β-nucleating agent in ethylene-propylene block copolymerized polypropylene. J. Polym. Res. 24, 143 (2017).
33.Yang, F., Wu, T., Xiang, M., and Cao, Y.: Deformation and pore formation mechanism of β nucleated polypropylene with different supermolecular structures. Eur. Polym. J. 91, 134 (2017).
34.Shi, S., Zhang, X., Liu, Y., Nie, M., and Wang, Q.: Crystalline modification and morphology of polypropylene developed under the combined effects of montmorillonite and self-assembly β nucleating agent. Compos. Sci. Technol. 135, 76 (2016).
35.Li, J.X. and Cheung, W.L.: On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer 39, 6935 (1998).
36.Kadam, S.S., Kramer, H.J.M., and Horst, J.H.T.: Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Cryst. Growth Des. 11, 12264 (2011).
37.Chuah, K.P., Gan, S.N., and Chee, K.K.: Determination of avrami exponent by differential scanning calorimetry for non-isothermal crystallization of polymers. Polymer 40, 253 (1999).
38.Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N.: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1 (2011).
39.Gonzalez-Calderon, J.A., Vallejo-Montesinos, J., Almendarez-Camarillo, A., Montiel, R., and Pérez, E.: Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochim. Acta 631, 8 (2016).
40.Zhao, S. and Xin, Z.: Crystallization kinetics of isotactic polypropylene nucleated with organic dicarboxylic acid salts. J. Appl. Polym. Sci. 112, 1471 (2009).
41.Bartczak, Z., Morawiec, J., and Galeski, A.: Structure and properties of isotactic polypropylene oriented by rolling with side constraints. J. Appl. Polym. Sci. 86, 1413 (2010).
42.Bassett, D.C., Block, S., and Piermarini, G.J.: A high-pressure phase of polyethylene and chain-extended growth. J. Appl. Phys. 45, 4146 (1974).
43.Turner-Jones, A. and Cobbold, A.J.M.: The β crystalline form of isotactic polypropylene. J. Polym. Sci., Part B: Polym. Lett. 6, 539 (1968).
44.Samuels, R.J. and Yee, R.Y.: Characterization of the structure and organization of β-form crystals in type III and type IV isotactic polypropylene spherulites. J. Polym. Sci., Part A-2 10, 385 (1972).
45.Cai, Z., Zhao, S.C., Shen, B.X., and Xin, Z.: The effect of bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate on the mechanical properties and crystallization behaviors of isotactic polypropylene. J. Appl. Polym. Sci. 116, 792 (2010).
46.Ozawa, T.: Kinetics of non-isothermal crystallization. Polymer 12, 150 (1971).
47.Cazé, C., Devaux, E., Crespy, A., and Cavrot, J.P.: A new method to determine the Avrami exponent by d.s.c. studies of non-isothermal crystallization from the molten state. Polymer 38, 497 (1997).


Type Description Title
Supplementary materials

Peng et al. supplementary material
Figures S1-S4

 Word (8.8 MB)
8.8 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed