Skip to main content Accessibility help

Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass

  • Pan Gong (a1), Shaofan Zhao (a1), Hongyu Ding (a1), Kefu Yao (a1) and Xin Wang (a2)...


The nonisothermal crystallization kinetics, fragility, and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass (HE-BMG) have been investigated by differential scanning calorimetry. The activation energies for the glass transition and crystallization events were determined by Kissinger and Ozawa methods. The value of local Avrami exponent is less than 1.5 in most cases for all the three crystallization events, indicating that the major crystallization mechanism is diffusion-controlled growth of pre-existing nuclei. The local activation energy is stable during the whole crystallization process and this further confirms that the crystallization occurs through a single mechanism. Ti20Zr20Cu20Ni20Be20 alloy can be classified into “strong glass formers” according to the estimated fragility index and also shows a relatively low value of Gibbs free energy difference. However, compared with Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG, the glass-forming ability of Ti20Zr20Cu20Ni20Be20 HE-BMG is much lower and the related reasons have been discussed.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2. Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
3. Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high-entropy alloys. JOM 64, 7 (2012).
4. Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).
5. Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).
6. Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
7. Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
8. Zhao, K., Xia, X.X., Bai, H.Y., Zhao, D.Q., and Wang, W.H.: Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl. Phys. Lett. 98, 141913 (2011).
9. Wang, W.H.: High-entropy metallic glasses. JOM 66, 2067 (2014).
10. Ma, L., Wang, L., Zhang, T., and Inoue, A.: Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys. Mater. Trans. 43, 277 (2002).
11. Gao, X.Q., Zhao, K., Ke, H.B., Ding, D.W., Wang, W.H., and Bai, H.Y.: High mixing entropy bulk metallic glasses. J. Non-Cryst. Solids 357, 3557 (2011).
12. Takeuchi, A., Chen, N., Wada, T., Yokoyama, Y., Kato, H., Inoue, A., and Yeh, J.W.: Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19, 1546 (2011).
13. Ding, H.Y. and Yao, K.F.: High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J. Non-Cryst. Solids 364, 9 (2013).
14. Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 . Appl. Phys. Lett. 63, 2342 (1993).
15. Hays, C.C., Kim, C.P., and Johnson, W.L.: Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses. Appl. Phys. Lett. 75, 1089 (1999).
16. Kim, Y.C., Kim, W.T., and Kim, D.H.: A development of Ti-based bulk metallic glass. Mater. Sci. Eng., A 375377, 127 (2004).
17. Cheng, S., Wang, C., Ma, M., Shan, D., and Guo, B.: Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy. Thermochim. Acta 587, 11 (2014).
18. Gong, P., Zhao, S.F., Wang, X., and Yao, K.F.: Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calotimetry. Appl. Phys. A 120, 145 (2015).
19. Song, K.K., Gargarella, P., Pauly, S., Ma, G.Z., Kuhn, U., and Eckert, J.: Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu-Zr-Ag metallic glasses. J. Appl. Phys. 112, 063503 (2012).
20. Raval, K.G., Lad, K.N., Pratap, A., Awasthi, A.M., and Bhardwaj, S.: Crystallization kinetics of a multicomponent Fe-based amorphous alloy using modulated differential scanning calorimetry. Thermochim. Acta 425, 47 (2005).
21. Sun, Y.D., Shen, P., Li, Z.Q., Liu, J.S., Cong, M.Q., and Jiang, M.: Kinetics of crystallization process of Mg-Cu-Gd based bulk metallic glasses. J. Non-Cryst. Solids 358, 1120 (2012).
22. Qin, F.X., Zhang, H.F., Ding, B.Z., and Hu, Z.Q.: Nanocrystallization kinetics of Ni-based bulk amorphous alloy. Intermetallics 12, 1197 (2004).
23. Hu, L. and Ye, F.: Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass. J. Alloys Compd. 557, 160 (2013).
24. Chen, S.F., Chen, C.Y., and Lin, C.H.: Insight on the glass-forming ability of Al-Y-Ni-Ce bulk metallic glass. J. Alloys Compd. 637, 418 (2015).
25. Qiao, J.C., Pelletier, J.M., Wang, Q., Jiao, W., and Wang, W.H.: On calorimetric study of the fragility in bulk metallic glasses with low glass transition temperature: (Ce0.72Cu0.28)90−xAl10Fex (x=0, 5 or 10) and Zn38Mg12Ca32Yb18 . Intermetallics 19, 1367 (2011).
26. Kim, Y.C., Park, J.M., Lee, J.K., Bae, D.H., Kim, W.T., and Kim, D.H.: Amorphous and icosahedral phases in Ti-Zr-Cu-Ni-be alloys. Mater. Sci. Eng., A 375377, 749 (2004).
27. Qiu, S.B., Yao, K.F., and Gong, P.: Effects of crystallization fractions on mechanical properties of Zr-based metallic glass matrix composites. Sci. China: Phys., Mech. Astron. 53, 424 (2010).
28. Kim, K.B., Zhang, Y., Warren, P.J., and Cantor, B.: Crystallization behavior in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique. Philos. Mag. 83, 2371 (2003).
29. Zhou, W., Hou, J., Zhong, Z., and Li, J.: Effect of Ag content on thermal stability and crystallization behavior of Zr-Cu-Ni-Al-Ag bulk metallic glass. J. Non-Cryst. Solids 411, 132 (2015).
30. Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).
31. Ozawa, T.: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. Calorim. 2, 301 (1970).
32. Chen, N., Li, Y., and Yao, K.F.: Thermal stability and fragility of Pd-Si binary bulk metallic glasses. J. Alloys Compd. 504, S211 (2010).
33. Málek, J.: The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta 267, 61 (1995).
34. Blázquez, J.S., Conde, C.F., and Conde, A.: Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys. Acta Mater. 53, 2305 (2005).
35. Ranganathan, S. and Von Heimendahl, M.: The three activation energies with isothermal transformations: Applications to metallic glasses. J. Mater. Sci. 16, 2401 (1981).
36. Patel, A.T. and Pratap, A.: Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass. J. Therm. Anal. Calorim. 107, 159 (2012).
37. Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).
38. Brüning, R. and Samwer, K.: Glass transition on long time scales. Phys. Rev. B 46, 11318 (1992).
39. Senkov, O.N.: Correlation between fragility and glass-forming ability of metallic alloys. Phys. Rev. B 76, 104202 (2007).
40. Park, E.S., Na, J.H., and Kim, D.H.: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloy. Appl. Phys. Lett. 91, 031907 (2007).
41. Chattopadhyay, C., Sangal, S., and Mondal, K.: Relook on fitting of viscosity with undercooling of glassy liquids. Bull. Mater. Sci. 37, 83 (2014).
42. Busch, R., Kim, Y.J., and Johnson, W.L.: Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J. Appl. Phys. 77, 4039 (1995).
43. Lad, K.N., Raval, K.G., and Pratap, A.: Estimation of Gibbs free energy difference in bulk metallic glass forming alloys. J. Non-Cryst. Solids 334335, 259 (2004).
44. Adam, G. and Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).


Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass

  • Pan Gong (a1), Shaofan Zhao (a1), Hongyu Ding (a1), Kefu Yao (a1) and Xin Wang (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed