Skip to main content Accessibility help

Noncontact thermophysical property measurement of liquid cerium by electrostatic levitation

  • Jianqiang Li (a1), Takehiko Ishikawa, Junpei T. Okada (a2), Yuki Watanabe (a3), Jianding Yu, Shinichi Yoda (a2) and Zhangfu Yuan (a4)...


The knowledge of thermophysical properties of active metals is critical to understand their metallurgical processes and further industrial applications. However, due to high reactivity and melt contamination from a crucible and gaseous environment, accurate values of the properties are hard to obtain using conventional methods such as the sessile-drop method. In the present study, a vacuum electrostatic levitator was used to circumvent these difficulties and enabled the noncontact determination of thermophysical properties of liquid cerium even in an undercooled state. The data of density, surface tension, and viscosity of molten cerium were reported, as well as their temperature dependence.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Lide, D.R. and Frederikse, H.P.R.: CRC Handbook of Chemistry and Physics, 78th ed. (CRC, Boca Raton, FL, 1997), pp. 112–123.
2Rhim, W-K., Chung, S-K., Barber, D., Man, K-F., Gutt, G., Rulison, A.A., and Spjut, R.E.: An electrostatic levitator for hightemperature containerless materials processing in l-g. Rev. Sci. Instrum. 64, 2961 (1993).
3Paradis, P-F., Ishikawa, T., and Yoda, S.: Electrostatic levitation research and development at JAXA: Past and present activities in thermophysics. Int. J. Thermophys. 26, 1031 (2005).
4Paradis, P-F. and Rhim, W-K.: Thermophysical properties of zirconium at high temperature. J. Mater. Res. 14, 3713 (1999).
5Yu, J., Paradis, P-F., Ishikawa, T., Yoda, S., Saita, Y., Itoh, M., and Kano, F.: Giant dielectric constant of hexagonal BaTiO3 crystal grown by containerless processing. Chem. Mater. 16, 3973 (2004).
6Paradis, P-F., Ishikawa, T., Fujii, R., and Yoda, S.: Physical properties of liquid and undercooled tungsten by levitation techniques. Appl. Phys. Lett. 86, 041901 (2005).
7Paradis, P-F., Ishikawa, T., and Yoda, S.: Noncontact density measurements of tantalum and rhenium in the liquid and undercooled states. Appl. Phys. Lett. 83, 4047 (2003).
8Paradis, P-F., Ishikawa, T., and Yoda, S.: Thermophysical properties of liquid and supercooled ruthenium measured by noncontact methods. J. Mater. Res. 19, 590 (2004).
9Ishikawa, T., Paradis, P-F., Itami, T., and Yoda, S.: Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator. Meas. Sci. Technol. 16, 443 (2005).
10Ishikawa, T., Paradis, P-F., Watanabe, Y., and Yoda, S.: Development of non-contact electrical resistivity measurement technique using an electrostatic levitator. J. Jpn. Soc. Microgravity Appl. 25, 399 (2008).
11Deluga, G.A., Salge, J.R., Schmidt, L.D., and Verykios, X.E.: Renewable hydrogen from ethanol by autothermal reforming. Science 303, 993 (2004).
12Esch, F., Fabris, S., Zhou, L., Montini, T., Africh, C., Fornasiero, P., Comelli, G., and Rosei, R.: Electron localization determines defect formation on ceria substrates. Science 309, 752 (2005).
13Lambertin, D., Homme, S.C., Bourges, G., and Sanchez, S.: Activity coefficients of plutonium and cerium in liquid gallium at 1073 K: Application to a molten salt/solvent metal separation concept. J. Nucl. Mater. 341, 131 (2005).
14Wu, C.M.L., Yu, D.Q., Law, C.M.T., and Wang, L.: Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng., R 44, 1 (2004).
15Kononenko, V.I., Sukhman, A.L., Gruverman, S.L., and Torokin, V.V.: Density and surface tension of liquid rare earth metals, scandium, and yttrium. Phys. Status Solidi A 84, 423 (1984).
16Chung, S-K., Thiessen, D.B., and Rhim, W-K.: A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials. Rev. Sci. Instrum. 67, 3175 (1996).
17Rhim, W-K., Ohsaka, K., and Paradis, P-F.: Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796 (1999).
18Ishiakwa, T., Paradis, P-F., Fujii, R., Saita, Y., and Yoda, S.: Thermophysical property measurements of liquid and supercooled irijium by containerless methods. Int. J. Thermophys. 26, 893 (2005).
19Rohr, W.G.: The liquid densities of cerium and neodymium metals. J. Less-Common Met. 10, 389 (1966).
20Bezuklandnikova, L.L., Kononenko, V.I., and Torokin, V.V.: Teplofiz. Vys. Temp. 27, 478 (1989).
21Pulliam, G.R. and Fitzsimmons, E.S.: Reactions of Cerium and Lanthanum with Ceramic Oxides (U.S., Atom. Energy Comm., Ames Lab. Rep. No. ISC-659-1955, 1955).
22Sukhman, A.L., Konenko, V.I., Gruverman, S.L., and Torokiv, V.V.: Surface Properties of Melts (Naukova Dumka, Kiev, 1982), pp. 107–117.
23Allen, B.C.: Liquid metals, in Chemistry and Physics (Dekker, New York, 1972).
24Keene, B.J.: Review of data for the surface tension of pure metals. Int. Mater. Rev. 38, 157 (1993).
25Mills, K.C. and Su, Y.C.: Review of surface tension data for metallic elements and alloys: Part 1–Pure metals. Int. Mater. Rev. 51, 329 (2006).
26Wittenberg, L.G. and Dewitt, R.: Prop. liquid metals, in Proc. Int. Conf., 2nd ed. (Takeuchi-Sakae Taylor and Francis, London, 1973).


Noncontact thermophysical property measurement of liquid cerium by electrostatic levitation

  • Jianqiang Li (a1), Takehiko Ishikawa, Junpei T. Okada (a2), Yuki Watanabe (a3), Jianding Yu, Shinichi Yoda (a2) and Zhangfu Yuan (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed