Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-26T09:25:43.706Z Has data issue: false hasContentIssue false

Noble metal silicide formation in metal/Si structures during oxygen annealing: Implications for perovskite-based memory devices

Published online by Cambridge University Press:  31 January 2011

K. L. Saenger
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
A. Grill
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
C. Cabral Jr.
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Extract

This paper investigates the potentially undesirable noble metal silicide formation reactions that may occur in noble metal electrodes deposited directly on silicon without an intervening diffusion barrier. Metal (90–100 nm)/Si structures of Pt/Si, Rh/Si, Ir/Si, and Ir/Ti/Si were annealed in oxygen or nitrogen ambients at temperatures of 640–700 °C. Metalysilicon reactions and phase formation were studied by Rutherford Backscattering Spectroscopy, x-ray diffraction, and electrical resistance measurements. While complete silicidation was observed in the Rh/Si, Pt/Si, and Ir/Si samples after 640 °C/6 min anneals in nitrogen, some Pt and most of the Ir remained after equivalent anneals in oxygen. More detailed studies of the Ir/Si samples indicated that some Ir is left unsilicided even after a 700 °C/6 min anneal in O2, and that the iridium silicide formed is the semiconducting IrSi1.75. The formation of this silicide can be delayed, but not prevented, with the use of a 5 nm Ti adhesion layer between the Ir and Si.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grill, A. and Brady, M. J., Integrated Ferroelectrics 9, 299 (1995).CrossRefGoogle Scholar
2.Allevato, C. E. and Vining, C. B., J. Alloys Compounds 200,99 (1993).Google Scholar
3.Schumann, J., Elefant, D., Glandun, C., Heinrich, A., Pitschke, W., Lange, H., Henrion, W., and Grotzschel, R., Phys. Status Solidi A 145, 429 (1994).CrossRefGoogle Scholar
4.Petersson, S., Reimer, J.A., Brodsky, M.H., Campbell, D.R., d'Heurle, F., Karlsson, B., and Tove, P.A., J. Appl. Phys. 53, 3342 (1982).CrossRefGoogle Scholar
5.Canali, C., Catellani, C., Prudenziati, M., Wadlin, W.H., and Evans, C.A. Jr., Appl. Phys. Lett. 31, 43 (1977).CrossRefGoogle Scholar
6.Wittmer, M., J. Appl. Phys. 54, 5081 (1983).CrossRefGoogle Scholar
7.Harder, C., Hammer, L., and Muller, K., Phys. Status Solidi A 146, 385 (1994).CrossRefGoogle Scholar
8.Das, S.R., Sheergar, K., Xu, D-X., and Naem, A., Thin Solid Films 253, 467 (1994).CrossRefGoogle Scholar
9.Rodriguez, T., Wolters, H., Almendra, A., Sanz-Maudes, J., DaSilva, M. F., and Soares, J. C., in Infrared Detectors—Materials, Proc-essing, and Devices, edited by Appelbaum, A. and Dawson, L. R. (Mater. Res. Soc. Symp. Proc. 299, Pittsburgh, PA, 1994), p. 313.Google Scholar
10.Petersson, S., Baglin, J., Hammer, W., d'Heurle, F., Kuan, T. S., Ohdomari, I., de Sousa Pires, J., and Tove, P., J. Appl. Phys. 50, 3357 (1979).CrossRefGoogle Scholar
11.Wittmer, M., Oelhafen, P., and Tu, K.N., Phys. Rev. B 35, 9073 (1987).CrossRefGoogle Scholar
12.Petersson, S., Anderson, R., Baglin, J., Dempsey, J., Hammer, W., d'Heurle, F., and LaPlaca, S., J. Appl. Phys. 51, 373 (1980).CrossRefGoogle Scholar
13.Fernandez, M., Rodriguez, T., Almendra, A., Jimenez-Leube, J., and Wolters, H., in Infrared Detectors—Materials, Processing, and Devices, edited by Appelbaum, A. and Dawson, L.R. (Mater. Res. Soc. Symp. Proc. 299, Pittsburgh, PA, 1994), p. 325.Google Scholar
14.Roy, R.A., Clevenger, L.A., Cabral, C. Jr., Saenger, K. L., Brauer, S., Jordan-Sweet, J., Bucchignano, J., Stephenson, G.B., Morales, G., and Ludwig, K. F. Jr., Appl. Phys. Lett. 66, 1732 (1995).Google Scholar
15.Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., Appl. Phys. Lett. 50, 1879 (1987).Google Scholar
16.Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, U., and Hösler, W., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.Google Scholar
17.Jones, R. E. Jr., Maniar, P.D., Dupuie, J. L., Kim, J., Moazzami, R., Witowski, J., Kottke, M. L., Saha, N.C., and Gregory, R.B., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 223.Google Scholar
18.The Merck Index, 10th ed., edited by Windholz, M. (Merck, Inc., 1983).Google Scholar