Skip to main content Accessibility help
×
Home

Ni3N compound layers produced by gaseous nitriding of nickel substrates; layer growth, macrostresses and intrinsic elastic anisotropy

  • Andreas Leineweber (a1), Franziska Lienert (a2), Shun Li Shang (a3), Zi-Kui Liu (a3) and Eric Jan Mittemeijer (a4)...

Abstract

Ni3N was prepared by gaseous nitriding of nickel substrates using gas mixtures of high nitrogen activities, composed of NH3 and H2 at 1 atm and at temperatures between 175 °C and 550 °C. At least above 300 °C closed Ni3N layers developed, which possess distinct compressive macrostrain parallel to the surface. The observed hkl-anisotropy of the macrostrain could be ascribed to the elastic anisotropy as indicated by the single-crystal elastic constants of Ni3N obtained from first-principles calculations performed in this work. The macrostress originates from the thermal misfit between layer and substrate, developing upon cooling. The extent of macrostress is reduced by partial misfit accommodation by plastic deformation as well as by porosity.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: a.leineweber@is.mpg.de

References

Hide All
1.Davis, J.R., Davidson, G.M., Lampman, S.R., Zorc, T.B., Daquila, J.L., Ronke, A.W., and Henniger, K.L.: ASM Handbook, Volume 4, Heat Treating (ASM International, Metals Park, Ohio, 1991).
2.Andriamandroso, D., Demazeau, G., Pouchard, M., and Hagenmuller, P.: New ferromagnetic materials for magnetic recording: The iron carbonitrides. J. Solid State Chem. 19, 1503 (1985).
3.Juza, R. and Sachsze, W.: On the system nickel/nitrogen (in German). Z. Anorg. Allg. Chem. 251, 201 (1943).
4.Juza, R. and Sachsze, W.: On the system cobalt/nitrogen (in German). Z. Anorg. Chem. 253, 95 (1945).
5.Leineweber, A., Jacobs, H., and Hull, S.: Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction. Inorg. Chem. 40, 5818 (2001).
6.Desmoulins-Kraviec, S., Aymonier, C., Loppinet-Serani, A., Weill, F., Grosse, S., Etourneau, J., and Cansell, F.: Synthesis of nanostructured materials in supercritical ammonia: Nitrides, metals and oxides. J. Mater. Chem. 14, 228 (2004).
7.Hasegawa, M. and Yagi, T.: Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating. J. Alloys Compd. 403, 131 (2005).
8.Choi, J. and Gillan, E.G.: Solvothermal metal azide decomposition routes to nanocrystalline metastable nickel, iron, and manganese nitrides. Inorg. Chem. 48, 4470 (2009).
9.Wang, Z.Q., Yu, W.J., Chen, J., Zhang, M.H., Li, W., and Tao, K.Y.: Facile synthesis of a metastable nanocrystalline Ni3N from nickel nanoparticle. J. Alloys Compd. 466, 352 (2008).
10.Guillaume, C., Morniroli, J.P., Frost, D.J., and Serghiou, G.: Synthesis of hexagonal Ni3N using high pressures and temperatures. J. Phys. Condens. Matter 18, 8651 (2006).
11.Dorman, G.J.W.R. and Sikkens, M.: Structure of reactively sputtered nickel nitride films. Thin Solid Films 105, 251 (1983).
12.Maya, L.: Deposition of crystalline binary nitride films of tin, copper, and nickel by reactive sputtering. J. Vac. Sci. Technol., A 11, 604 (1993).
13.Vempaire, D., Fettar, F., Ortega, L., Pierre, F., Miraglia, S., Sulpice, A., Pelletier, J., Hlil, E.K., and Fruchart, D.: Nonmagnetic thin layers of Ni3N. J. Appl. Phys. 106, 073911 (2009).
14.Vempaire, D., Miraglia, S., Pelletier, J., Fruchart, D., Hlil, E.K., Ortega, L., Sulpice, A., and Fettar, F.: Structural and magnetic properties of Ni3N synthesized by multidipolar microwave plasma-assisted reactive sputtering. J. Alloys Compd. 480, 225 (2009).
15.Popovic, N., Bogdanov, Z., Goncic, B., Strbac, S., and Rakocevic, Z.: Reactively sputtered Ni, Ni(N) and Ni3N films: Structural, electrical and magnetic properties. Appl. Surf. Sci. 225, 4027 (2009).
16.Wriedt, H.A.: The N-Ni (Nitrogen-Nickel) system. Bull. Alloy Phase Diagr. 6, 558 (1985).
17.Fernandez Guillermet, A. and Frisk, K.: Thermodynamic properties of Ni nitrides and phase stability in the Ni-N system. Int. J. Thermophys. 12, 417 (1991).
18.Terao, N. and Berghezan, A.: Transformation of metallic lattices under the influence of interstitial elements—tranformation of nickel under the influence of nitrogen (in French). J. Phys. Soc. Jpn. 14, 139 (1959).
19.Terao, N.: A novel form of nickel nitride—Ni4N (in French). J. Phys. Soc. Jpn. 15, 227 (1960).
20.Nagakura, N., Otsuka, N., and Hirotsu, Y.: Electron state of Ni4N studied by electron-diffraction. J. Phys. Soc. Jpn. 35, 1492 (1973).
21.Lehrer, E.: On the equilibrium iron-hydrogen-ammonia (in German). Z. Elektrochem. 36, 383 (1930).
22.Mittemeijer, E.J. and Somers, M.A.J.: Thermodynamics, kinetics, and process control of nitriding. Surf. Eng. 13, 483 (1997).
23.Kunze, J.: Nitrogen and Carbon in Iron and Steel (Akademie-Verlag, Berlin, 1990).
24.Fernández Guillermet, A. and Du, H.: Thermodynamic analysis of the Fe-N system using the compound-energy model with prediction of the vibrational entropy. Z. Metallkd. 85, 154 (1994).
25.Leineweber, A., Lienert, F., Glock, S., Woehrle, T., Schaaf, P., Wilke, M., and Mittemeijer, E.J.: X-ray diffraction investigations on gas nitrided nickel and cobalt. Z. Kristallogr. Proc. 1, 293 (2011).
26.AnalySIS. Image Analyisis Software, Soft imaging system GmbH: Germany.
27.TOPAS. General Profile and Structure Analysis Software for Powder Diffraction Data, Karlsruhe, Germany: Bruker AXS GmbH.
28.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
29.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
30.Kresse, G. and Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).
31.Shang, S.L., Wang, Y., and Liu, Z.K.: First-principles elastic constants of α- and θ-Al2O3. Appl. Phys. Lett. 90, 101909 (2007).
32.Methfessel, M. and Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).
33.Blöchl, P.E., Jepsen, O., and Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).
34.Nikolussi, M., Shang, S.L., Gressmann, T., Leineweber, A., Mittemeijer, E.J., Wang, Y., and Liu, Z.-K.: Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence by x-ray diffraction stress measurements. Scr. Mater. 59, 814 (2008).
35.Shang, S.L., Sheng, G., Wang, Y., Chen, L.Q., and Liu, Z.K.: Elastic properties of cubic and rhombohedral BiFeO3 from first-principles calculations. Phys. Rev. B 80, 052102 (2009).
36.Ganeshan, S., Shang, S.L., Wang, Y., and Liu, Z.K.: Effect of alloying elements on the elastic properties of Mg from first-principles calculations. Acta Mater. 57, 3876 (2009).
37.Shang, S.L., Wang, Y., Kim, D.E., and Liu, Z.K.: First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Comput. Mater. Sci. 47, 1040 (2010).
38.Gressmann, T., Leineweber, A., and Mittemeijer, E.J.: X-ray diffraction line-profile analysis of hexagonal ε-iron-nitride compound layers: Composition- and stress-depth profiles. Philos. Mag. 88, 145 (2008).
39.Kaminsky, W.: Wintensor Version 1.1. (University of Washington, Seattle, 2004).
40.Ranganathan, S.I. and Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).
41.Gressmann, T., Wohlschlögel, M., Shang, S., Welzel, U., Leineweber, A., Mittemeijer, E.J., and Liu, Z.-K.: Elastic anisotropy of γ′-Fe4N and elastic grain interaction in γ′-Fe4N1-y layers on α-Fe: First-principles calculations and diffraction stress measurements. Acta Mater. 55, 5833 (2007).
42.Ledbetter, H. and Migliori, A.: A general elastic-anisotropy measure. J. Appl. Phys. 100, 063516 (2006).
43.Born, M. and Huang, K.: Dynamic Theory of Crystal Lattices (Oxford University Press, Oxford, 1962).
44.Grabke, H.J., Strauss, S., and Vogel, D.: Nitridation in NH3-H2O-mixtures. Mater. Corros. 54, 895 (2003).
45.Prenosil, B.: Some new insights on the microstructure of layers carobnitrided at 600 °C (in German). Härt. Techn. Mitt. 28, 157 (1973).
46.Juza, R.: Nitrides of metals of the first transition series. Adv. Inorg. Chem. 9, 81 (1966).
47.Gokcen, N.A.: The Mn-N (Manganese-Nitrogen) system. Bull. Alloy Phase Diagr. 11, 33 (1990).
48.Leineweber, A., Jacobs, H., and Kockelmann, W.: Nitrogen ordering in ζ-manganese nitrides with hcp arrangement of Mn—MnNy with 0.39 < y < 0.48—determined by neutron diffraction. J. Alloys Compd. 368, 229 (2004).
49.Somers, M.A.J. and Mittemeijer, E.J.: Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides. Metall. Mater. Trans. A 26A, 57 (1995).
50.Gressmann, T., Nikolussi, M., Leineweber, A., and Mittemeijer, E.J.: Formation of massive cementite layers on iron by ferritic carburizing in the additional presence of ammonia. Scr. Mater. 55, 723 (2006).
51.Nikolussi, M., Leineweber, A., and Mittemeijer, E.J.: Growth of massive cementite layers; thermodynamic parameters and kinetics. J. Mater. Sci. 44, 770 (2009).
52.Hillert, M., Höglund, L., and Ågren, J.: Diffusion in interstitial compounds with thermal and stoichiometric defects. J. Appl. Phys. 98, 053511 (2005).
53.Welzel, U., Ligot, J., Lamparter, P., Vermeulen, A.C., and Mittemeijer, E.J.: Stress analysis of polycrystalline thin films and surface regions by x-ray diffraction. J. Appl. Crystallogr. 38, 1 (2005).
54.Welzel, U. and Mittemeijer, E.J.: Diffraction stress analysis of macroscopically elastically anisotropic specimens: On the concepts of diffraction elastic constants and stress factors. J. Appl. Phys. 93, 9001 (2003).
55.Leineweber, A., Gressmann, T., Nikolussi, M. and Mittemeijer, E.J.: The hkl dependence of microstrain line broadening and of macrostress-induced peak shifting; a comparison for intrinsically extremely anisotropic cementite, Fe3C. Z. Kristallogr. Suppl. 30, 103 (2009).
56.Howard, C.J. and Kisi, E.H.: Measurement of single-crystal elastic constants by neutron diffraction from polycrystals. J. Appl. Crystallogr. 32, 624 (1999).
57.Leineweber, A., Jacobs, H., Kockelmann, W., Hull, S., and Hinz-Hübner, D.: High temperature axial ratios c/a in hcp-based ε-type interstitial nitrides MNy with M = Mn, Fe, Ni. J. Alloys Compd. 384, 1 (2004).
58.Kollie, T.: Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K and determination of the power-law constants near the curie temperature. Phys. Rev. B 16, 4872 (1977).
59.Chopra, K.L.: Thin Film Phenomena (McGraw-Hill, New York, 1969).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed