Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T07:36:13.698Z Has data issue: false hasContentIssue false

A new type of brittle fracture in a fcc metal bicrystal with intergranular segregation

Published online by Cambridge University Press:  31 January 2011

Jian-Sheng Wang
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Get access

Abstract

A new type of brittle fracture was discovered in a Cu–Bi alloy bicrystal with a random misorientation interface. Macroscopically, fracture occurred along the interface with a low-energy release rate of order 50 Jm−2. Microscopically, the crack apparently propagated in a zigzag manner such that a cleavagelike fracture was produced, which consists of two sets of smooth {110} facets and one set of {100} facets with serrations corresponding to their intersections with {111} slip planes. Facet sizes are typically of order 1 by 5 μm or smaller. The very smooth facets and low-energy absorption suggest that a decohesion separation process has occurred along {110} planes, and the serrations suggest that substantial dislocation slip accompanied fracture of the {100} facets. The fracture surface morphology may be explained as the result of a similar morphology of Bi-induced microscopic faceting of the bicrystal interface or, instead, may result from fracture propagating in the vicinity of, but not quite along, the interface. Evidence is presented that favors the latter so that this is a rapid, cleavagelike, semiintergranular fracture that has not been observed in fee metals or alloys when an environment effect is not involved. Its faceted features resemble those of transgranular stress corrosion cracks in certain fee metals.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Voce, E. and A. Hallowes, P. C.J. Inst. Met. 73, 323 (1947).Google Scholar
2Hondros, E. D. and McLean, D.Philos. Mag. 29, 771 (1974).Google Scholar
3Donald, A. M. and Brown, L. M.Acta Metall. 27, 59 (1979).CrossRefGoogle Scholar
4Biggin, S. in the Proceedings of the 9th International Conference on Electron Microscopy, Toronto, 1978, Vol. 1, p. 600.CrossRefGoogle Scholar
5Fraczkiewicz, A. and Biscondi, M.J. Phys. (Paris) 46, C4497 (1985).CrossRefGoogle Scholar
6Russell, J. D. and Winter, A. T.Scr. Metall. 19, 575 (1985).CrossRefGoogle Scholar
7Lynch, S. P.Scr. Metall. 13, 1051 (1979).Google Scholar
8Liu, R.Narita, H.Altstetter, C.Birnbaum, H. and Pugh, E. N.Metall. Trans. A11, 1563 (1980).Google Scholar
9Nelson, J. L. and Beavers, J. A.Metall. Trans. A10, 658 (1979).Google Scholar
10Sieradski, K.Sabatini, R. L. and Newman, R. C.Metall. Trans. A15, 1941 (1984).Google Scholar
11Kaufman, M. J.Pugh, E. N. and Forty, A. J. Presentation at the 2nd International Conference on Fundamentals of Fracture, Gatlinberg, Tennessee, 4–7 November 1985.Google Scholar
12Pugh, E. N.Corrosion, NACE 41, 517 (1985).CrossRefGoogle Scholar
13Sieradski, K. and Newman, R. C.Philos. Mag. A51, 95 (1985).Google Scholar
14Yan, B. and Laird, C.Mater. Sci. Eng. 80, 59 (1986).Google Scholar
15Buchinger, L. and Laird, C.Mater. Sci. Eng. 76, 71 (1985).CrossRefGoogle Scholar
16Binary Alloy Phase Diagrams, edited by Massalski, T. B. (American Society of Metals, Metals Park, OH, 1986), Vol. 1.Google Scholar
17Thorpe, S. T.Erb, V.Miller, W. A. and Aust, K. T. (private communication).Google Scholar
18Moya, F.Moya-Gontier, G. E., Cabane-Brouty, F., and Oudar, J.Acta Metall. 19, 1189 (1971).CrossRefGoogle Scholar
19Aufray, B. and Cabane, J.Scr. Metall. 15, 1339 (1981).CrossRefGoogle Scholar
20Pineau, A.Aufray, B.Cabana-Brouty, F., and Cabana, J.Acta Me-tall. 31, 1047 (1983).Google Scholar
21Singh, B.Wook, R. W. and Knabbe, E.A.J. Vac. Sci. Technol. 17, 29 (1980).Google Scholar
22Chikwembani, S. and Weertman, J.Scr. Metall. 19, 1499 (1985).CrossRefGoogle Scholar
23Donald, A.Philos. Mag. 34, 1185 (1976).CrossRefGoogle Scholar
24Donald, A. M. and Craven, A. J.Philos. Mag. A39, 1 (1979).Google Scholar
25Michael, J. R. and Williams, D. E.Metall. Trans. A15, 99 (1984).Google Scholar
26Rellick, J. R.McMahon, C. J.Marcus, H. L. and Palmberg, P. W.Metall. Trans. 2, 1492 (1971).Google Scholar
27McMahon, C. J.Furubayashi, E.Ohtani, H. and Feng, H. C.Acta Metall. 24, 695 (1976).CrossRefGoogle Scholar
28Wagner, W. R.Tan, T. Y. and Balluffi, R. W.Philos. Mag. 29, 895 (1974).CrossRefGoogle Scholar
29Bishop, G. H.Hortt, W. H. and Bruggeman, G. Q.Acta Metall. 19, 37 (1971).CrossRefGoogle Scholar
30Weins, M. J. and Weins, J. J.Philos. Mag. 26, 885 (1972).CrossRefGoogle Scholar
31Rice, J. R. in Chemistry and Physics of Fracture, edited by Latanision, R. M. and Jones, R. H. (Martinus Nijhoff, Dordrecht, The Netherlands, 1987) (to be published).Google Scholar
32Wang, J. S.Review of Data to Evaluate Segregation Effects on the Ductile-Brittle Transition in Cu-Bi Bicrystals,” Progress Report, Harvard University, 1985.Google Scholar
33Anderson, P. M. Ph.D. dissertation Harvard University, 1986.Google Scholar
34Wang, J. S.Anderson, P. M. and Rice, J. R. in Mechanical Behavior of Materials V, edited by Yan, M. G.Zhang, S. H. and Zheng, Z. M. (Pergamon, New York, 1987), p. 191.Google Scholar
35Gittmann, M.Quantin, B. and Domonlin, Ph.Met. Sci. 17, 123 (1983).Google Scholar