Skip to main content Accessibility help

Near-zero thermal expansion and phase transition in In0.5(ZrMg)0.75Mo3O12

  • Luciana P. Prisco (a1), Patricia I. Pontón (a1), Waldeci Paraguassu (a2), Carl P. Romao (a3), Mary Anne White (a4) and Bojan A. Marinkovic (a1)...


Physical properties of In0.5(ZrMg)0.75Mo3O12, including the coefficient of thermal expansion, phase stability, hygroscopicity, and decomposition temperature have been thoroughly studied by in situ x-ray powder diffraction, Raman spectroscopy and thermal methods. These investigations show that In0.5(ZrMg)0.75Mo3O12 exists in a monoclinic phase (P21/a) at room temperature and transforms to an orthorhombic (Pbcn) phase at ∼82 °C. In the orthorhombic form this material presents intrinsic near-zero thermal expansion (−0.16 × 10−6 K−1) in the range between 100 and 500 °C. The phase is not hygroscopic, but starts to decompose into its constituent oxides at temperatures higher than 700 °C. In comparison to the end member phase ZrMgMo3O12 in the In2Mo3O12–ZrMgMo3O12 solid solution, In0.5(ZrMg)0.75Mo3O12 is less promising for near room-temperature applications due to the phase transition from monoclinic to orthorhombic slightly above room temperature. However, the orthorhombic phase of In0.5(ZrMg)0.75Mo3O12 has potential for applications that require zero thermal expansion at temperatures higher than 100 °C.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Evans, J.S.O., Mary, T.A., and Sleight, A.W.: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 (1997).
2. Romao, C.P., Miller, K.J., Whitman, C.A., White, M.A., and Marinkovic, B.A.: Negative thermal expansion (thermomiotic) materials. In Comprehensive Inorganic Chemistry II, Vol. 4, Reedijk, J. and Poeppelmeier, K., eds. (Elsevier: Oxford, 2013); p. 128151.
3. Lind, C.: Two decades of negative thermal expansion research: Where do we stand? Materials 5(6), 1125 (2012).
4. Evans, J.S.O.: Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 19, 3317 (1999).
5. Evans, J.S.O., Mary, T.A., and Sleight, A.W.: Negative thermal expansion materials. Phys. B Condens. Matter. 241–243, 311 (1997).
6. Sumithra, S. and Umarji, A.M.: Negative thermal expansion in rare earth molybdates. Solid State Sci. 8(12), 1453 (2006).
7. Ari, M., Jardim, P.M., Marinkovic, B.A., Rizzo, F., and Ferreira, F.F.: Thermal expansion of Cr2 xFe2−2x Mo3O12, Al2x Fe2−2x Mo3O12 and Al2x Cr2−2x Mo3O12 solid solutions. J. Solid State Chem. 181(6), 1472 (2008).
8. Varga, T., Moats, J.L., Ushakov, S.V., and Navrotsky, A.: Thermochemistry of A2M3O12 negative thermal expansion materials. J. Mater. Res. 22(9), 2512 (2007).
9. Goodwin, A.L., Wells, S.A., and Dove, M.T.: Cation substitution and strain screening in framework structures: The role of rigid unit modes. Chem. Geol. 225(3–4), 213 (2006).
10. Miller, K.J., Johnson, M.B., White, M.A., and Marinkovic, B.A.: Low-temperature investigations of the open-framework material HfMgMo3O12 . Solid State Commun. 152(18), 1748 (2012).
11. Evans, J.S.O. and Mary, T.A.: Structural phase transitions and negative thermal expansion in Sc2(MoO4)3 . Int. J. Inorg. Mater. 2(1), 143 (2000).
12. Marinkovic, B.A., Jardim, P.M., de Avillez, R.R., and Rizzo, F.: Negative thermal expansion in Y2Mo3O12 . Solid State Sci. 7(11), 1377 (2005).
13. Marinkovic, B.A., Ari, M., de Avillez, R.R., Rizzo, F., Ferreira, F.F., Miller, K.J., Johnson, M.B., and White, M.A.: Correlation between AO6 polyhedral distortion and negative thermal expansion in orthorhombic Y2Mo3O12 and related materials. Chem. Mater. 21(13), 2886 (2009).
14. Wu, M.M., Zu, Y., Peng, J., Liu, R.D., Hu, Z.B., Liu, Y.T., and Chen, D.F.: Controllable thermal expansion properties of In2−x Cr x Mo3O12 . Cryst. Res. Technol. 47(7), 793 (2012).
15. Romao, C.P., Perras, F.A., Werner-Zwanziger, U., Lussier, J.A., Miller, K.J., Calahoo, C.M., Zwanziger, J.W., Bieringer, M., Marinkovic, B.A., Bryce, D.L., and White, M.A.: Zero thermal expansion in ZrMgMo3O12: NMR crystallography reveals origins of thermoelastic properties. Chem. Mater. 27(7), 2633 (2015).
16. Miller, K.J., Romao, C.P., Bieringer, M., Marinkovic, B.A., Prisco, L.P., and White, M.A.: Near-zero thermal expansion in In(HfMg)0.5Mo3O12 . J. Am. Ceram. Soc. 96(2), 561 (2012).
17. Song, W., Yuan, B., Liu, X., Li, Z., Wang, J., and Liang, E.: Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+ . J. Mater. Res. 29(7), 849 (2014).
18. Gindhart, A.M., Lind, C., and Green, M.: Polymorphism in the negative thermal expansion material magnesium hafnium tungstate. J. Mater. Res. 23(1), 210 (2008).
19. Marinkovic, B.A., Jardim, P.M., Ari, M., De Avillez, R.R., Rizzo, F., and Ferreira, F.F.: Low positive thermal expansion in HfMgMo3O12 . Phys. Status Solidi 245(11), 2514 (2008).
20. Song, W.B., Liang, E.J., Liu, X.S., Li, Z.Y., Yuan, B.H., and Wang, J.Q.: A negative thermal expansion material of ZrMgMo3O12 . Chin. Phys. Lett. 30(12), 126502 (2013).
21. Song, W.B., Wang, J.Q., Li, Z.Y., Liu, X.S., Yuan, B.H., and Liang, E.J.: Phase transition and thermal expansion property of Cr2−x Zr0.5x Mg0.5x Mo3O12 solid solution. Chin. Phys. B 23(6), 066501 (2014).
22. Li, F., Liu, X., Song, W., Yuan, B., Cheng, Y., Yuan, H., Cheng, F., Chao, M., and Liang, E.: Phase transition, crystal water and low thermal expansion behavior of Al2−2x (ZrMg) x W3O12·n(H2O). J. Solid State Chem. 218, 15 (2014).
23. Suzuki, T. and Omote, A.: Zero thermal expansion in (Al2x (HfMg)1−x )(WO4)3 . J. Am. Ceram. Soc. 89(2), 691 (2006).
24. Sleight, A.W. and Brixner, L.H.: A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J. Solid State Chem. 7(2), 172 (1973).
25. Marinkovic, B.A., Ari, M., Jardim, P.M., de Avillez, R.R., Rizzo, F., and Ferreira, F.F.: In2Mo3O12: A low negative thermal expansion compound. Thermochim. Acta 499(1–2), 48 (2010).
26. Pley, M. and Wickleder, M.S.: Two crystalline modifications of RuO4 . J. Solid State Chem. 178(10), 3206 (2005).
27. Paraguassu, W., Maczka, M., Filho, A.G.S., Freire, P.T.C., Melo, F.E.A., Filho, J.M., and Hanuza, J.: A comparative study of negative thermal expansion materials Sc2(MoO4)3 and Al2(WO4)3 crystals. Vib. Spectrosc. 44(1), 69 (2007).
28. Wojdyr, M.: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43(5 Part 1), 1126 (2010).
29. Sivasubramanian, V., Ravindran, T.R., Nithya, R., and Arora, A.K.: Structural phase transition in indium tungstate. J. Appl. Phys. 96(1), 387 (2004).
30. Torres Dias, A.C., Luz Lima, C., Paraguassu, W., Pereira Da Silva, K., Freire, P.T.C., Mendes Filho, J., Marinkovic, B.A., Miller, K.J., White, M.A., and Souza Filho, A.G.: Pressure-induced crystal-amorphous transformation in Y2Mo3O12 . Vib. Spectrosc. 68, 251 (2013).
31. Maczka, M., Paraguassu, W., Souza Filho, A.G., Freire, P.T.C., Mendes Filho, J., Melo, F.E.A., and Hanuza, J.: High-pressure Raman study of Al2(WO4)3 . J. Solid State Chem. 177(6), 2002 (2004).
32. Li, Q.J., Yuan, B.H., Song, W.B., Liang, E.J., and Yuan, B.: The phase transition, hygroscopicity, and thermal expansion properties of Yb2−x Al x Mo3O12 . Chin. Phys. B 21(4), 046501 (2012).
33. Ravindran, T.R., Sivasubramanian, V., and Arora, A.K.: Low temperature Raman spectroscopic study of scandium molybdate. J. Phys. Condens. Matter 17(2), 277 (2005).
34. Harrison, W.T.A., Cheetham, A.K., and Faber, J.: The crystal structure of aluminum molybdate, Al2(MoO4)3, determined by time-of-flight powder neutron diffraction. J. Solid State Chem. 76(2), 328 (1988).
35. Evans, J.S.O., Mary, T.A., and Sleight, A.W.: Negative thermal expansion in Sc2(WO4)3 . J. Solid State Chem. 137(1), 148 (1998).
36. Srikanth, V., Subbarao, E.C., and Rao, G.V.: Thermal expansion anisotropy, microcracking and acoustic emission of Nb2O5 ceramics. Ceram. Int. 18(4), 251 (1992).
37. Jardim, P.M., Garcia, E.S., and Marinkovic, B.A.: Young's modulus, hardness and thermal expansion of sintered Al2W3O12 with different porosity fractions. Ceram. Int. 42(4), 5211 (2016).
38. Carter, C.B. and Norton, M.G.: Ceramic Materials (Springer, New York, NY, 2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Prisco supplementary material
Figures S1-S3 and Table S1

 Word (552 KB)
552 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed