Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:07:28.868Z Has data issue: false hasContentIssue false

Near-threshold ultraviolet-laser ablation of Kapton film investigated by x-ray photoelectron spectroscopy

Published online by Cambridge University Press:  31 January 2011

D. W. Zeng*
Affiliation:
The State Key Laboratory of Plastic Forming Simulation and Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (430074), People's Republic of China
K. C. Yung
Affiliation:
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
C. S. Xie
Affiliation:
The State Key Laboratory of Plastic Forming Simulation and Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (430074), People's Republic of China
*
a) Address all correspondence to this author. e-mail: davizeng@public.wh.hb.cn
Get access

Abstract

Near-threshold ultraviolet-laser (355 nm) ablation of 125-μm thick Kapton films was investigated in detail using x-ray photoelectron spectroscopy. Different from the irradiation at higher fluences, the contents of the oxygen, amide group, and C–O group on the ablated surface increased with an increase in the pulse number, whereas the carbon contents decreased, although the contents of the nitrogen and the carbonyl group (C = O) decreased slightly. This implied that there was no carbon-rich residue on the ablated surface. Near the ablation threshold, only photolysis of the C–N bond in the imide rings and the diaryl ether group (C–O) took place due to a low surface temperature rise, and the amide structure and many unstable free radical groups were created. Sequentially, the oxidation reaction occurred to stabilize the free radical groups. The decomposition and oxidation mechanism could explain the intriguing changes of the chemical composition and characteristics of the ablated surface. In addition, the content of the C–O group depended on the opposite factors: the thermally induced decomposition of the ether groups and the pyrolysis of the Caryl–C bond. Upon further irradiation, the cumulative heating may induce the breakage of the Caryl–C bond and enhance the oxidation reaction, resulting in an increase of the content of the C–O group.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Srinivasan, R. and Mayne-Banton, V., Appl. Phys. Lett. 40, 40 (1982).Google Scholar
2.Andrew, E., Dyer, P.E., Forster, D., and Key, P.E., Appl. Phys. Lett. 43, 717 (1983).CrossRefGoogle Scholar
3.Beuhler, A., Tungare, A., and Savic, J., Circuit World 24, 36 (1998).CrossRefGoogle Scholar
4.Brannon, J.H., Lankard, J.R., Baise, A.I., Burns, F., Kaufman, J., J. Appl. Phys. 58, 2036 (1985).CrossRefGoogle Scholar
5.Cain, S.R., J. Phys. Chem. 97, 7572 (1993).CrossRefGoogle Scholar
6.Blanchet, G.B., Fincher, C.R., Jr., Jackson, C.L., Shah, S.I., and Gardner, K.H., Science 262, 719 (1993).CrossRefGoogle Scholar
7.Fukumura, H., Hamano, K., and Masuhara, H., J. Phys. Chem. 97, 12110 (1993).CrossRefGoogle Scholar
8.Wen, X., Hare, D.E., and Dlott, D.D., Appl. Phys. Lett. 64, 184 (1994).CrossRefGoogle Scholar
9.Plamer, B.J., Keyes, T., Clarke, R.H., and Isner, J.M., J. Phys. Chem. 93, 7509 (1989).CrossRefGoogle Scholar
10.Jellinek, H.H.G. and Srinivasan, R., J. Phys. Chem. 88, 3048 (1984).CrossRefGoogle Scholar
11.Srinivasan, R., J. Appl. Phys. 72, 1651 (1992).CrossRefGoogle Scholar
12.Srinivasan, R., Appl. Phys. A 56, 417 (1993).CrossRefGoogle Scholar
13.Yung, Winco K.C., Liu, J.S., Man, H.C., and Yue, T.M., J. Mater. Process. Tech. 101, 306 (2000).CrossRefGoogle Scholar
14.Lippert, T., Stebani, J., Ihlemann, J., Nuyken, O., Wokaun, A., and Srinivasan, R., J. Phys. Chem. 97, 12296 (1993).CrossRefGoogle Scholar
15.Dyer, P.E., Oldershaw, G.A., and Schudel, D., J. Phys. D: Appl. Phys. 25, 323 (1992).CrossRefGoogle Scholar
16.Brannon, J.H., Scholl, D., and Kay, E., Appl. Phys. A 52, 160 (1991).CrossRefGoogle Scholar
17.Yung, K.C. and Zeng, D.W., Surf. Coat. Technol. 145, 186 (2001).CrossRefGoogle Scholar
18.Srinivasan, R., Hall, R.R., Loehle, W.D., Wilson, W.D., and Allbee, D.C., J. Appl. Phys. 78, 4881 (1995).CrossRefGoogle Scholar
19.Ortelli, E.E., Geiger, F., Lippert, T., Wei, J., and Wokaun, A., Macromolecules 33, 5090 (2000).CrossRefGoogle Scholar
20.Ortelli, E.E., Geiger, F., Lippert, T., and Wokaun, A., Appl. Spectrosc. 55, 412 (2001).CrossRefGoogle Scholar
21.Lippert, T., Ortelli, E., Panitz, J.C., Raimondi, F., Wambach, J., Wei, J., and Wokaun, A., Appl. Phys. A 69, s651 (2000).CrossRefGoogle Scholar
22.Schnyder, B., Wambach, J., Kunz, Th., Hahn, Ch., and Kotz, R., J. Electron. Spectrosc. 105, 113 (1999).CrossRefGoogle Scholar
23.Wesner, D.A., Aden, M., Gottmann, J., Husmann, A., and Kreutz, E.W., Fresenius J. Anal. Chem. 365, 183 (1999).CrossRefGoogle Scholar
24.Zeng, D.W., Yung, K.C., and Xie, C.S., Surf. Coat. Technol. 153, 210 (2002).CrossRefGoogle Scholar
25.Yung, K.C., Zeng, D.W., and Yue, T.M., Appl. Surf. Sci. 173, 193 (2001).CrossRefGoogle Scholar
26.Zeng, D.W. and Yung, K.C., Appl. Surf. Sci. 180, 280 (2001).CrossRefGoogle Scholar
27.Küper, S., Brannon, J., and Brannon, K., Appl. Phys. A 56, 43 (1993).CrossRefGoogle Scholar
28.Luk´yanchuk, B., Bityurin, N., Anisimov, S., Arnold, N., and Bäuerle, D., Appl. Phys. A 62, 397 (1996).CrossRefGoogle Scholar
29.Luk´yanchuk, B., Bityurin, N., Himmelbauer, M., Arnold, N., and Bäuerle, D., Nucl. Instrum. Methods Phys. Res. B 122, 347 (1997).CrossRefGoogle Scholar
30.Himmelbauer, M., Arenholz, E., Bäuerle, D., Schilcher, K., Appl. Phys. A 63, 337 (1996).CrossRefGoogle Scholar
31.Himmelbauer, M., Arnold, N., Bityurin, N., Arenholz, E., Bäuerle, D., Appl. Phys. A 64, 451 (1996).Google Scholar
32.Bäuerle, D., Himmelbauer, M., and Arenholz, E., J. Photochem. Photobio. A: Chem. 106, 27 (1997).CrossRefGoogle Scholar
33.Ghosh, M.K. and Mittal, K.L., Polyimides: Fundamentals and Applications (Marcel Dekker, New York, 1996), p. 222.Google Scholar
34.Matienzo, L.J. and Egitto, F.D., Polym. Degrad. Stabil. 35, 181 (1992).CrossRefGoogle Scholar
35.Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers: The Scienta ESCA300 database (John Wiley & Sons, New York, 1992), p. 214.Google Scholar
36.Wolan, J.T. and Hoflund, G.B., J. Vac. Sci. Technol. A 17, 662 (1999).CrossRefGoogle Scholar
37.Dueley, W.W., UV Lasers: Effects and Applications in Materials Science (Cambridge University Press, New York, 1996), p. 150.CrossRefGoogle Scholar
38.Takeichi, T., Eguchi, Y., Kaburagi, Y., Hishiyama, Y., and Inagaki, M., Carbon 37, 569 (1999).CrossRefGoogle Scholar
39.Hishiyama, Y., Yoshida, A., and Inagaki, M., Carbon 36, 1113 (1998).CrossRefGoogle Scholar
40.Burns, F.C. and Cain, S.R., J. Phys. D: Appl. Phys. 29, 1349 (1996).CrossRefGoogle Scholar