Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T20:31:43.627Z Has data issue: false hasContentIssue false

Nd: YAG laser patterning of plasma-deposited high Tc superconducting thick films

Published online by Cambridge University Press:  03 March 2011

Usha Varshney
Affiliation:
American Research Corporation of Virginia, P.O. Box 3406, Radford, Virginia 24143-3406
B.D. Eichelberger III
Affiliation:
American Research Corporation of Virginia, P.O. Box 3406, Radford, Virginia 24143-3406
J.M. Glass
Affiliation:
American Research Corporation of Virginia, P.O. Box 3406, Radford, Virginia 24143-3406
R.J. Churchill
Affiliation:
American Research Corporation of Virginia, P.O. Box 3406, Radford, Virginia 24143-3406
A.I. Kingon
Affiliation:
Department of Materials Science Engineering, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

Advances in the development of high Tc superconducting thick film components and devices for microwave, millimeterwave, and submillimeterwave applications have led to the optimization of laser patterning techniques. Plasma-sprayed superconducting thick films of YBaCuO materials on polycrystalline alumina were laser etched using an Nd: YAG laser (λ = 1.06 μm) in the Q-switched mode. Spatial uniformity of the surface elemental distribution of Y, Ba, Cu, and Al was observed in the underlying laser-etched area. An etch rate of 7.5 μm/scan was calculated at an optimized laser fluencc of 1.8 × 104 J/cm2 for a translation rate of 2.54 cm/s, having patterning widths ranging from 5–15 μm with a heat-affected zone of 3 μm. An absorption length of 18.3 μm for the Nd: YAG laser was determined to be suitable for patterning thick films (20–80 μm) for device fabrication. The results are further compared to CO2 (λ = 10.6 μm) laser etching for patterning (250 μm) thick films.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neiser, R.A., Kirkland, J.P., Herman, H., Elam, W.T., and Skelton, E.F., Mater. Sci. Eng. 91, L13 (1987).CrossRefGoogle Scholar
2. Heintze, G.N., McPherson, R., Tolino, D., and Andrikidis, C., J. Mater. Sci. Lett. 7, 251 (1988).CrossRefGoogle Scholar
3. Tachikawa, K., Watanabe, I., Kosuge, S., Kabasawa, M., Suzuki, T., Matsuda, Y., and Shinbo, Y., Appl. Phys. Lett. 52 (12), 1011 (1988).CrossRefGoogle Scholar
4. Cuomo, J.J., Guarnieri, R.G., Shivasankar, S.A., Roy, R.A., Roy, D.S., Yee, D.S., and Rosenberg, R., Adv. Ceram. Mater. 2, 422 (1987).CrossRefGoogle Scholar
5. Suryanarayanan, R., Brun, G., Meguelatti, F., Rateau, M., Pankowska, H., Gorochov, O., and Bhandage, G. T., Vide, Le, Supplement 241, 21 (1988).Google Scholar
6. Karthikeyan, J., Sreekumar, K.P., Kurup, M.B., Patil, D. S., Anantapadmanabhan, P. V., Venkatramani, N., and Rohatgi, V. K., J. Phys. D: Appl. Phys. 21, 1246 (1988).CrossRefGoogle Scholar
7. Konaka, T., Sankawa, I., Matsura, T., Higashi, T., and Ishihara, K., Jpn. J. Appl. Phys. 27, L1092 (1988).CrossRefGoogle Scholar
8. Kirkland, J.P., Neiser, R.A., Herman, H., Elam, W.T., Sampath, S., Skelton, E. F., Gansert, D., and Wang, H. G., Adv. Ceram. Mater. 2, 401 (1987).CrossRefGoogle Scholar
9. Elam, W. T., Kirkland, J. P., Neiser, R. A., and Skelton, E. F., Adv. Ceram. Mater. 2, 411 (1987).CrossRefGoogle Scholar
10. Varshney, U., Churchill, R.J., Groger, H.P., and Kingon, A.I., J. Appl. Phys. 66 (3), 1392 (1989).CrossRefGoogle Scholar
11. Varshney, U., Churchill, R.J., Groger, H.P., and Kingon, A.I., J. Supercon. 2 (2), 293 (1989).CrossRefGoogle Scholar
12. Inam, A., Wu, X.D., Venkatesan, T.V., Ogale, S.B., Cheng, C.C., and Dijkkamp, D., Appl. Phys. Lett. 51, 1112 (1987).CrossRefGoogle Scholar