Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T22:58:32.206Z Has data issue: false hasContentIssue false

Nanoscale carbon blacks produced by CO2 laser pyrolysis

Published online by Cambridge University Press:  03 March 2011

Xiang-Xin Bi*
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8433 and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. Jagtoyen
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8433
M. Endo
Affiliation:
Faculty of Engineering, Shinshu University, Nagano-city 380, Japan
K. Das Chowdhury*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
R. Ochoa
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8433
F.J. Derbyshire
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8433
M.S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
P.C. Eklund
Affiliation:
Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8433 and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506
*
a)Present address: International Center for Materials Research, 750 Enterprise Dr., Lexington, Kentucky 40511.
b)Present address: Intel Corp., 4100 Sara Rd., Rio Rancho, New Mexico 87124.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

CO2 laser pyrolysis has been used to synthesize carbon black (particle diameter ∼30 nm) via a catalytically driven pyrolysis of benzene vapor. The H : C ratio is found to be ∼1 : 10, which is unusually high for carbon blacks. Subsequent heat treatment of the “laser black” to temperatures up to ∼2800 °C produces well-graphitized faceted particles with central polygonal cavities. High resolution TEM lattice imaging, Raman scattering, and x-ray diffraction have been used to characterize the morphological structure of these carbon particles in their as-synthesized and heat-treated forms. Furthermore, KOH treatment at ∼800 °C has been employed to activate the as-synthesized particles, producing a tenfold increase in the surface area from 50 to 700 m2/g. Possible pore structures generated during this activation process have been identified by high resolution TEM imaging.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

References

REFERENCES

1Lahaye, J. and Prado, G., in Chemistry and Physics of Carbon, edited by Walker, P.L. (Marcel Dekker, Inc., New York, 1978), Vol. 14, p. 167.Google Scholar
2Carbon Black, edited by Donnet, J-B., Bansal, R. C., and Wang, M-J. (Marcel Dekker, Inc., New York, 1993).Google Scholar
3Howe, J.A., J. Chem. Phys. 39, 1362 (1963).CrossRefGoogle Scholar
4Yampolskii, Y. P., Maximov, Y.V., Novikov, N. P., and Lavrovskii, K. P., Khim, , Vys. Energ. 4, 283 (1970).Google Scholar
5Maleissye, J. T. D., Lempereur, F., and Marsal, C., C. R. Acad. Sci., Paris, Ser. 275, 1153 (1972).Google Scholar
6Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., J. Mater. Res. 8, 20542097 (1993).CrossRefGoogle Scholar
7Haggerty, J. S., in Laser-induced Chemical Processes, edited by Steinfeld, J.I. (Plenum Press, New York, 1981).Google Scholar
8Eklund, P. C., Bi, X-X, and Derbyshire, F.J., Preprints of Fuel Division, American Chemical Society 37 (4), 1781 (1992).Google Scholar
9Bi, X-X., Ganguly, B., Huffman, G.P., Huggins, F. E., Endo, M., and Eklund, P.C., J. Mater. Res. 8, 1666 (1993).CrossRefGoogle Scholar
10Eklund, P.C., Ochoa, R., Bi, X-X., Dresselhaus, M.S., and Bandow, S., Energeia 5 (6), 1 (1994).Google Scholar
11Bi, X-X., Chowdhury, K., Lee, W., Bandow, S., Dresselhaus, M.S., and Eklund, P.C., Proc. Mater. Res. Soc. (1995, in press).Google Scholar
12Stencel, J.M., Eklund, P.C., Bi, X-X., and Derbyshire, F.J., Catalysis Today 15, 285 (1992).CrossRefGoogle Scholar
13Tesner, P. A., Polyakova, M.M., and Mikheeva, S.S., Tr. Vses. Nauk. Issled. Inst. Priz. Gazov 40/48, 8 (1969).Google Scholar
14Abadzev, S.S., Tesner, P.A., and Smevchan, U.V., Gazov. Prom. 14 (10), 36 (1969).Google Scholar
15Al'Thuler, B.N. and Tesner, P. A., Gazov. Prom. 6, 41 (1969).Google Scholar
16Fedoseev, D. V. and Vnukov, S. P., Dok. Akad. Nauk. SSSR [Sov. Phys. Dokl.] 209 (5), 1162 (1973).Google Scholar
17Warren, B.E., J. Chem. Phys. 2, 551 (1934).CrossRefGoogle Scholar
18Warren, B.E., Phys. Rev. 59, 693 (1941).Google Scholar
19Franklin, R. E., Acta Crystallogr. 3, 107 (1950).CrossRefGoogle Scholar
20Franklin, R.E., Acta Crystallogr. 4, 253 (1951).CrossRefGoogle Scholar
21Bourrat, X., Carbon 31 (2), 287302 (1993).CrossRefGoogle Scholar
22Schwob, Y., in Chemistry and Physics of Carbon, edited by Walker, P. L. and Thrower, P. A. (Marcel Dekker, Inc., New York and Basel, 1979), Vol. 15, p. 109.Google Scholar
23Marsh, P. A., Voet, A., Mullens, T. J., and Price, L. D., Carbon 9, 797805 (1971).CrossRefGoogle Scholar
24Heidenreich, R. D., Hess, W. M., and Ban, L. L., J. Appl. Crystallogr. 1, 1 (1968).Google Scholar
25Ban, L. L. and Hess, W. M., Extended Abstracts 10th Biennial Conference on Carbon (Defense Ceramic Information Center, Columbus, OH, 1971), p. 159.Google Scholar
26Ban, L. L., Chemical Society of London 1, 54 (1972).Google Scholar
27Hall, C. E., J. Appl. Phys. 19, 271 (1948).CrossRefGoogle Scholar
28Boehm, H.P., Z. Anorg. U. Allgem. Chem. 297, 315 (1958).CrossRefGoogle Scholar
29Kasatotchkine, V. I., Loukianovitch, V. M., Popov, N. H., and Tchmoutov, K. V., J. Chem. Phys. 37, 822 (1960).Google Scholar
30Heidenreich, R.D., Bell System, Tech. J. 47, 265 (1968).CrossRefGoogle Scholar
31Donnet, J.B. and Bouland, J.C., Rev. Gen. Caout. 41, 407 (1964).Google Scholar
32Heckman, F.A., Rubber Chem. Technol. 37, 1245 (1964).Google Scholar
33Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53 (3), 11261130 (1970).CrossRefGoogle Scholar
34Dresselhaus, M. S. and Dresselhaus, G., in Light Scattering in Solids 111, Topics in Applied Physics (Springer-Verlag, Berlin, 1982), Vol. 51, p. 3.Google Scholar
35Knight, D.S. and White, W.B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
36Fung, A.W.P., Wang, Z.H., Lu, K., Dresselhaus, M.S., and Pekala, R. W., J. Mater. Res. 8, 1875 (1993).Google Scholar
37Anderson, R. B., Koebel, H., and Ralek, M., The Fischer-Tropsch Synthesis (Academic Press, London, 1984), pp. 140145.Google Scholar
38Baker, R.T. K., Harris, P. S., Thomas, R.B., and Waite, R. J., J. Catalysis 30, 8696 (1973).CrossRefGoogle Scholar
39Bansal, R. C. and Donnet, J.B., Carbon Black Science and Technology, edited by Donnet, J. B., Bansal, R. C., and Wang, M. J. (Marcel Dekker Inc., New York, 1993), pp. 6788.Google Scholar
40Palmer, H. and Cullis, C., in Chemistry and Physics of Carbon, edited by Walker, P. L. (Marcel Dekker, New York, 1965), Vol. 1, p. 265.Google Scholar
41Nakamizo, M., Kammereck, R., and Walker, P. L., Carbon 12, 259267 (1974).Google Scholar
42Sato, Y., Kamo, M., and Setaka, N., Carbon 16, 279280 (1978).CrossRefGoogle Scholar
43Nakamizo, M., Carbon 29, 757761 (1991).CrossRefGoogle Scholar
44Bansal, R. C., Donnet, J. B., and Stoeckli, F., Active Carbon (Marcel Dekker Inc., New York, 1988), p. 139.Google Scholar
45Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, 2nd ed. (Academic, London, 1982), pp. 94100.Google Scholar
46Rodriguez-Reinoso, F., Martin-Martinez, J. M., Prado-Burguette, C. P., and McEnaney, B., J. Phys. Chem. 91, 515516 (1987).CrossRefGoogle Scholar
47Endo, M., Oshida, K., Takeuchi, K., Sasuda, Y., Matsubayashi, K., and Dresselhaus, M.S., Trans. IEICE Japan J77–II, 139 (1994).Google Scholar
48Jagtoyen, M., Toles, C., and Derbyshire, F., Preprints of ACS, Denver, Colorado, March 28–April 2, 1993.Google Scholar
49Kasuh, T., Scott, D. A., and Mori, M., Proceedings Carbon '88, Newcastle, England (IOP Publishing Ltd., 1988).Google Scholar
50Otowa, T., in Proc. Adsorptive Separation, May 20–21, 1991, Tokyo, Japan, edited by Suzuki, M. (1991).Google Scholar