Skip to main content Accessibility help

Nanomechanical studies of high-entropy alloys

  • Yu Zou (a1)


In the past decade, nanomechanical techniques have become ubiquitous for mechanical measurement concurrently with the discovery of high-entropy alloys (HEAs). Different from large-scale testing, small-scale measurements offer quantitative details about mechanical behavior of materials at the micro/nanoscale, presenting new opportunities to probe fundamental nature of HEAs. This article will review the literature on using versatile nanomechanical tools for HEA studies, including nanoindentation, microcompression, high-temperature deformation, fracture measurement, and in situ electron microscopy. With these approaches, many interesting phenomena and properties of HEAs have been unveiled, for example, properties about incipient plasticity, strain-rate sensitivity, creep, diffusion, size-dependent strength, and fracture, which are difficult, or impossible, to be measured in macroscopic experiments. Despite current literature only focusing on a few HEA compositions and several methods, as nanomechanics and HEAs are developing rapidly, a new avenue of research is to be exploited. The article concludes with perspectives about future directions in this field.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1.Mügge, O.: On slip and related phenomena in crystals. Neues Fahr. F. Miner. 7, 71 (1898).
2.Ewing, J.A. and Rosenhain, W.: Experiments in micro-metallurgy: Effects of strain. Preliminary notice. Proc. R. Soc. London 65, 85 (1899).
3.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
4.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
5.Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).
6.Kraft, O., Gruber, P.A., Monig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).
7.Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).
8.Gianola, D.S. and Eberl, C.: Micro- and nanoscale tensile testing of materials. JOM 61, 24 (2009).
9.Wheeler, J.M. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84, 045103 (2013).
10.Dehm, G., Jaya, B.N., Raghavan, R., and Kirchlechner, C.: Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales. Acta Mater. 142, 248 (2018).
11.Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A.: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).
12.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
13.Zou, Y. and Spolenak, R.: Size-dependent plasticity in micron- and submicron-sized ionic crystals. Philos. Mag. Lett. 93, 431 (2013).
14.Michler, J., Wasmer, K., Meier, S., Ostlund, F., and Leifer, K.: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 043123 (2007).
15.Korte, S. and Clegg, W.J.: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).
16.Zou, Y., Kuczera, P., Sologubenko, A., Sumigawa, T., Kitamura, T., Steurer, W., and Spolenak, R.: Superior room-temperature ductility of typically brittle quasicrystals at small sizes. Nat. Commun. 7, 12261 (2016).
17.Volkert, C., Donohue, A., and Spaepen, F.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 083539 (2008).
18.Zhu, T. and Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55, 710 (2010).
19.Li, J., Shan, Z., and Ma, E.: Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108 (2014).
20.Zou, Y.: Materials selection in micro- or nano-mechanical design: Towards new Ashby plots for small-sized materials. Mater. Sci. Eng., A 680, 421 (2017).
21.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
22.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).
23.Huang, P.K., Yeh, J.W., Shun, T.T., and Chen, S.K.: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74 (2004).
24.Yeh, J.W., Chen, Y.L., Lin, S.J., and Chen, S.K.: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 1 (2007).
25.Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).
26.Tsai, K-Y., Tsai, M-H., and Yeh, J-W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).
27.Yao, M., Pradeep, K., Tasan, C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72, 5 (2014).
28.Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).
29.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
30.Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).
31.Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).
32.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
33.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
34.Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).
35.Gao, M.C., Yeh, J-W., Liaw, P.K., and Zhang, Y.: High-entropy Alloys (Springer, Switzerland 2016).
36.Senkov, O.N. and Woodward, C.F.: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng., A 529, 311 (2011).
37.Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2014).
38.Song, H., Tian, F., Hu, Q-M., Vitos, L., Wang, Y., Shen, J., and Chen, N.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).
39.Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).
40.Zou, Y., Okle, P., Yu, H., Sumigawa, T., Kitamura, T., Maiti, S., Steurer, W., and Spolenak, R.: Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scr. Mater. 128, 95 (2017).
41.Xu, X.D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T.G., Liu, C.T., and Chen, M.W.: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 84, 145 (2015).
42.Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).
43.Ye, Y.X., Lu, Z.P., and Nieh, T.G.: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).
44.Jiao, Z-M., Ma, S-G., Yuan, G-Z., Wang, Z-H., Yang, H-J., and Qiao, J-W.: Plastic deformation of Al0.3CoCrFeNi and AlCoCrFeNi high-entropy alloys under nanoindentation. J. Mater. Eng. Perform. 24, 3077 (2015).
45.Wu, D., Jang, J.S.C., and Nieh, T.G.: Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics 68, 118 (2016).
46.Mridha, S., Das, S., Aouadi, S., Mukherjee, S., and Mishra, R.S.: Nanomechanical behavior of CoCrFeMnNi high-entropy alloy. JOM 67, 2296 (2015).
47.Lin, S-Y., Chang, S-Y., Chang, C-J., and Huang, Y-C.: Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr)NxSiy high-entropy coatings. Entropy 16, 405417 (2014).
48.Bahr, D.F., Kramer, D., and Gerberich, W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).
49.Suresh, S., Nieh, T-G., and Choi, B.: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999).
50.Schuh, C., Mason, J., and Lund, A.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).
51.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).
52.Mason, J., Lund, A., and Schuh, C.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).
53.Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).
54.Lee, D-H., Choi, I-C., Seok, M-Y., He, J., Lu, Z., Suh, J-Y., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).
55.Lee, D-H., Seok, M-Y., Zhao, Y., Choi, I-C., He, J., Lu, Z., Suh, J-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).
56.Lee, D-H., Lee, J-A., Zhao, Y., Lu, Z., Suh, J-Y., Kim, J-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis. Acta Mater. 140, 443 (2017).
57.Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).
58.Caillard, D. and Martin, J-L.: Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, U.K. 2003).
59.Messerschmidt, U.: Dislocation Dynamics during Plastic Deformation, Vol. 1; Springer Series in Materials Science, Vol. 129 (Springer-Verlag, Berlin Heidelberg, 2010). ISBN: 978-3-642-03176-2.
60.Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation. J. Mater. Res. 32, 2658 (2017).
61.Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des. 115, 479 (2017).
62.Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).
63.Wang, Z., Guo, S., Wang, Q., Liu, Z., Wang, J., Yang, Y., and Liu, C.T.: Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics 53, 183 (2014).
64.Ma, Y., Feng, Y.H., Debela, T.T., Peng, G.J., and Zhang, T.H.: Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Metals Hard Mater. 54, 395 (2016).
65.Zhang, L., Yu, P., Cheng, H., Zhang, H., Diao, H., Shi, Y., Chen, B., Chen, P., Feng, R., Bai, J., Jing, Q., Ma, M., Liaw, P.K., Li, G., and Liu, R.: Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 47, 5871 (2016).
66.Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).
67.Poletti, M.G., Fiore, G., Gili, F., Mangherini, D., and Battezzati, L.: Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+5 at.% of C. Mater. Des. 115, 247 (2017).
68.Ye, Y.X., Liu, C.Z., Wang, H., and Nieh, T.G.: Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 147, 78 (2018).
69.Dou, R. and Derby, B.: A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524 (2009).
70.Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
71.Ng, K.S. and Ngan, A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).
72.Schneider, A.S., Kaufmann, D., Clark, B.G., Frick, C.P., Gruber, P.A., Monig, R., Kraft, O., and Arzt, E.: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).
73.Schneider, A.S., Frick, C.P., Clark, B.G., Gruber, P.A., and Arzt, E.: Influence of orientation on the size effect in bcc pillars with different critical temperatures. Mater. Sci. Eng., A 528, 1540 (2011).
74.Kim, J.Y. and Greer, J.R.: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245 (2009).
75.Kim, J-Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).
76.Rao, S.I., Dimiduk, D.M., Tang, M., Parthasarathy, T.A., Uchic, M.D., and Woodward, C.: Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 87, 4777 (2007).
77.Norfleet, D.M., Dimiduk, D.M., Polasik, S.J., Uchic, M.D., and Mills, M.J.: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).
78.Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).
79.Liu, Z., Guo, S., Liu, X., Ye, J., Yang, Y., Wang, X-L., Yang, L., An, K., and Liu, C.T.: Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scr. Mater. 64, 868 (2011).
80.Giwa, A.M., Liaw, P.K., Dahmen, K.A., and Greer, J.R.: Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi high entropy alloy. Extreme Mech. Lett. 8, 220 (2016).
81.Raghavan, R., Kirchlechner, C., Jaya, B.N., Feuerbacher, M., and Dehm, G.: Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scr. Mater. 129, 52 (2017).
82.Zhang, H., Siu, K.W., Liao, W., Wang, Q., Yang, Y., Lu, Y. : In situ mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Mater. Res. Express 3, 094002 (2016).
83.Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).
84.Heczel, A., Kawasaki, M., Ugi, D., Jang, J-i., Langdon, T.G., and Gubicza, J.: The influence of chemical heterogeneities on the local mechanical behavior of a high-entropy alloy: A micropillar compression study. Mater. Sci. Eng., A 721, 165 (2018).
85.El-Awady, J.A., Uchic, M.D., Shade, P.A., Kim, S-L., Rao, S.I., Dimiduk, D.M., and Woodward, C.: Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals. Scr. Mater. 68, 207 (2013).
86.Hütsch, J. and Lilleodden, E.T.: The influence of focused-ion beam preparation technique on microcompression investigations: Lathe versus annular milling. Scr. Mater. 77, 49 (2014).
87.Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).
88.Zou, Y., Ma, H., and Spolenak, R.: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).
89.Weinberger, C.R. and Cai, W.: Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. U. S. A. 105, 14304 (2008).
90.Greer, J.R., Weinberger, C.R., and Cai, W.: Comparing the strength of fcc and bcc sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater. Sci. Eng., A 493, 21 (2008).
91.Wheeler, J.M., Maier, V., Durst, K., Göken, M., and Michler, J.: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108 (2013).
92.Wei, Q. and Kecskes, L.J.: Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten. Mater. Sci. Eng., A 491, 62 (2008).
93.Mohanty, G., Wheeler, J.M., Raghavan, R., Wehrs, J., Hasegawa, M., Mischler, S., Philippe, L., and Michler, J.: Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philos. Mag., 95, 878 (2014).
94.Cai, Z., Cui, X., Liu, E., Li, Y., Dong, M., Lu, B., and Jin, G.: Fracture behavior of high-entropy alloy coating by in situ TEM tensile testing. J. Alloy. Comp. 729, 897 (2017).
95.Gao, L., Song, J., Jiao, Z., Liao, W., Luan, J., Surjadi, J.U., Li, J., Zhang, H., Sun, D., and Liu, C.T.: High-entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv. Eng. Mater. 20, 1700625 (2018).
96.Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J-P.: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).
97.Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W., and Dolinšek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).
98.Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, K., and Luo, J.: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).
99.Zhang, Z., Mao, M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O.: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).
100.Zaiser, M. and Seeger, A.: Chapter 56 long-range internal stresses, dislocation patterning and work-hardening in crystal plasticity. In Dislocations in Solids, Nabarro, F.R.N. and Duesbery, M.S., ed. (Elsevier, Oxford, U.K. 2002); p. 1.
101.Walker, A., Carrez, P., and Cordier, P.: Atomic-scale models of dislocation cores in minerals: Progress and prospects. Mineral. Mag. 74, 381 (2010).
102.McNally, P.J.: Techniques: 3D imaging of crystal defects. Nature 496, 37 (2013).
106.Iqbal, F., Ast, J., Göken, M., and Durst, K.: In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 60, 1193 (2012).
107.Kiener, D., Grosinger, W., Dehm, G., and Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580 (2008).
108.Minor, A.M., Shan, Z.W., Mishra, R.K., Asif, S.A.S., and Warren, O.L.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).
109.Hull, D. and Bacon, D.J.: Introduction to Dislocations (Elsevier, Oxford, U.K. 2011).
110.Lin, Q. and Corbett, J.D.: New building blocks in the 2/1 crystalline approximant of a Bergman-type icosahedral quasicrystal. Proc. Natl. Acad. Sci. U. S. A. 103, 13589 (2006).


Related content

Powered by UNSILO

Nanomechanical studies of high-entropy alloys

  • Yu Zou (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.