Skip to main content Accessibility help

Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion

  • Dong-Hyun Lee (a1), In-Chul Choi (a1), Moo-Young Seok (a1), Junyang He (a2), Zhaoping Lu (a2), Jin-Yoo Suh (a3), Megumi Kawasaki (a4), Terence G. Langdon (a5) and Jae-il Jang (a6)...


A CoCrFeNiMn high-entropy alloy (HEA), in the form of a face-centered cubic (fcc) solid solution, was processed by high-pressure torsion (HPT) to produce a nanocrystalline (nc) HEA. Significant grain refinement was achieved from the very early stage of HPT through 1/4 turn and an nc structure with an average grain size of ∼40 nm was successfully attained after 2 turns. The feasibility of significant microstructural changes was attributed to the occurrence of accelerated atomic diffusivity under the torsional stress during HPT. Nanoindentation experiments showed that the hardness increased significantly in the nc HEA during HPT processing and this was associated with additional grain refinement. The estimated values of the strain-rate sensitivity were maintained reasonably constant from the as-cast condition to the nc alloy after HPT through 2 turns, thereby demonstrating a preservation of plasticity in the HEA. In addition, a calculation of the activation volume suggested that the grain boundaries play an important role in the plastic deformation of the nc HEA where the flow mechanism is consistent with other nc metals. Transmission electron microscopy showed that, unlike conventional fcc nc metals, the nc HEA exhibits excellent microstructural stability under severe stress conditions.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).
2. Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
3. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
4. Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).
5. He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).
6. Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).
7. Senkov, O.N., Scott, J., and Senkova, S.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).
8. Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).
9. Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
10. Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526 (2013).
11. Wu, Y., Liu, W.H., Wang, X.L., Ma, D., Stoica, A.D., Nieh, T.G., He, Z.B., and Lu, Z.P.: In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl. Phys. Lett. 104, 051910 (2014).
12. Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G., and George, E.P.: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348 (2015).
13. Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).
14. Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., Zherebtsov, S., Efimov, A., and Salishchev, G.: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8 (2015).
15. Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).
16. Valiev, R.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).
17. Meyer, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
18. Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).
19. Zhu, T. and Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55, 710 (2010).
20. Choi, I-C., Kim, Y-J., Seok, M-Y., Yoo, B-G., Kim, J-Y., Wang, Y., and Jang, J-I.: Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses. Int. J. Plast. 41, 53 (2013).
21. Ma, Y., Peng, G.J., Wen, D.H., and Zhang, T.H.: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng., A 621, 111 (2015).
22. Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Shi, J., Wang, W.M., Wang, H., Wang, Y.C., and Zhang, Q.J.: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, 31 (2009).
23. Varalakshmi, S., Kamaraj, M., and Murty, B.S.: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 10271030 (2010).
24. Praveen, S., Murty, B.S., and Kottada Ravi, S.: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).
25. Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).
26. Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).
27. Langdon, T.G.: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).
28. Tang, Q.H., Huang, Y., Huang, Y.Y., Liao, X.Z., Langdon, T.G., and Dai, P.Q.: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126 (2015).
29. Zhilyaev, A.P., Kim, B.K., Nurislamova, G.V., Baró, M.D., Szpunar, J.A., and Langdon, T.G.: Orientation imaging microscopy of ultrafine-grained nickel. Scr. Mater. 46, 575 (2002).
30. Zhilyaev, A.P., Nurislamova, G.V., Kim, B.K., Baró, M.D., Szpunar, J.A., and Langdon, T.G.: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).
31. Wongsa-Ngam, J., Kawasaki, M., and Langdon, T.G.: A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J. Mater. Sci. 48, 4653 (2013).
32. Valiev, R.Z., Ivanisenko, Y.V., Rauch, E.F., and Baudelet, B.: Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation. Acta Mater. 44, 4705 (1996).
33. Figueiredo, R.B., Cetlin, P.R., and Langdon, T.G.: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528, 8198 (2011).
34. Figueiredo, R.B., Pereira, P.H.R., Aguilar, M.T.P., Cetlin, P.R., and Langdon, T.G.: Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 60, 3190 (2012).
35. Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).
36. Kawasaki, M. and Langdon, T.G.: The significance of strain reversals during processing by high-pressure torsion. Mater. Sci. Eng., A 498, 341 (2008).
37. Kawasaki, M.: Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J. Mater. Sci. 49, 18 (2014).
38. Salishchev, G.A., Tikhonovsky, M.A., Shaysultanov, D.G., Stepanov, N.D., Kuznetsov, A.V., Kolodiy, I.V., Tortika, A.S., and Senkov, O.N.: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11 (2014).
39. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
40. Choi, I-C., Lee, D-H., Ahn, B., Durst, K., Kawasaki, M., Langdon, T.G., and Jang, J-I.: Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scr. Mater. 94, 44 (2015).
41. Choi, I-C., Kim, Y-J., Ahn, B., Kawasaki, M., Langdon, T.G., and Jang, J-I.: Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn–22% Al during high-pressure torsion. Scr. Mater. 75, 102 (2014).
42. Tsai, K-Y., Tsai, M-H., and Yeh, J-W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).
43. Chang, S-Y., Li, C-E., Huang, Y-C., Hsu, H-F., Yeh, J-W., and Lin, S-J.: Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Sci. Reports 4, 4162 (2014).
44. Bhattacharjee, P.P., Sathiara, G.D., Zaid, M., Gatti, J.R., Lee, C., Tsai, C-W., and Yeh, J-W.: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544 (2014).
45. Amouyal, Y., Divinski, S.V., Estrin, Y., and Rabkin, E.: Short-circuit diffusion in an ultrafine-grained copper–zirconium alloy produced by equal channel angular pressing. Acta Mater. 55, 5968 (2007).
46. Divinski, S.V., Ribbe, J., Baither, D., Schmitz, G., Reglitz, G., Rösner, H., Sato, K., Estrin, Y., and Wilde, G.: Nano- and micro-scale free volume in ultrafine grained Cu–1 wt.% Pb alloy deformed by equal channel angular pressing. Acta Mater. 57, 5706 (2009).
47. Divinski, S.V., Ribbe, J., Reglitz, G., Estrin, Y., and Wilde, G.: Percolating network of ultrafast transport channels in severely deformed nanocrystalline metals. J. Appl. Phys. 106, 063502 (2009).
48. Divinski, S.V., Reglitz, G., Rösner, H., Estrin, Y., and Wilde, G.: Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 59, 1974 (2011).
49. Oh-ishi, K., Edalati, K., Kim, H-S., Hono, K., and Horita, Z.: High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 61, 3482 (2013).
50. Ahn, B., Zhilyaev, A.P., Lee, H-J., Kawasaki, M., and Langdon, T.G.: Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater. Sci. Eng., A 635, 109 (2015).
51. Minamino, Y., Yamane, T., and Shimomura, A.: Effect of high pressure on interdiffusion in an Al-Mg alloy. J. Mater. Sci. 18, 2679 (1983).
52. Edalati, K., Miresmaeili, R., Horita, Z., Kanayama, H., and Pippan, R.: Significance of temperature increase in processing by high-pressure torsion. Mater. Sci. Eng., A 528, 7301 (2011).
53. Pereira, P.H.R., Figueiredo, R.B., Huang, Y., Cetlin, P.R., and Langdon, T.G.: Modeling the temperature rise in high-pressure torsion. Mater. Sci. Eng., A 593, 185 (2014).
54. Kim, H-S.: Finite element analysis of high pressure torsion processing. J. Mater. Process. Technol. 113, 617 (2001).
55. Choi, I-C., Kim, Y-J., Wang, Y.M., Ramamurty, U., and Jang, J-I.: Nanoindentation behavior of nanotwinned Cu: Influences of indenter angle on hardness, strain rate sensitivity and activation volume. Acta Mater. 61, 7313 (2013).
56. Shim, S., Jang, J-I., and Pharr, G.M.: Extraction of flow properties of single crystal silicon carbide by nanoindentation and finite element simulation. Acta Mater. 56, 3824 (2008).
57. Wang, C.L., Lai, Y.H., Huang, J.C., and Nieh, T.G.: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62, 175 (2010).
58. Dalla Torre, F., Spätig, P., Schäublin, R., and Victoria, M.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 53, 2337 (2005).
59. Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).
60. Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).
61. Chen, J., Lu, L., and Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 (2006).
62. Wang, Y.M., Hamza, A.V., and Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).
63. Zhu, T., Li, J., Samanta, A., Kim, H-G., and Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. USA 104, 3031 (2007).
64. Conrad, H.: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).
65. Conard, H.: Plastic deformation kinetics in nanocrystalline FCC metals based on the pile-up of dislocations. Nanotechnology 18, 325701 (2007).
66. Frost, H.J. and Ashby, M.F.: Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982).
67. Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).
68. Ma, E.: Watching the nanograins roll. Science 305, 623 (2004).
69. Asaro, R.J. and Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 (2005).
70. Wu, D., Zhang, J., Huang, J.C., Bei, H., and Nieh, T.G.: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals. Scr. Mater. 68, 118 (2013).
71. Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).
72. Zhang, K., Weertman, J.R., and Eastman, J.A.: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).
73. Zhang, K., Weertman, J.R., and Eastman, J.A.: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).
74. Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H., Li, X., Mukherjee, A.K., Bingert, J.F., and Zhu, Y.T.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed