Skip to main content Accessibility help

Nanoindentation near the edge

  • J.E. Jakes (a1), C.R. Frihart (a1), J.F. Beecher (a1), R.J. Moon (a2), P.J. Resto (a1), Z.H. Melgarejo (a3), O.M. Suárez (a4), H. Baumgart (a5), A.A. Elmustafa (a6) and D.S. Stone (a7)...


Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load–depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as functions of position. Previously, we showed that the artifacts can be understood in terms of a structural compliance, Cs, which is independent of the size of the indent. In the present work, the utility of the SYS (Stone, Yoder, Sproul) correlation is demonstrated in its ability to remove the artifacts caused by Cs. We investigate properties: (i) near the surface of an extruded polymethyl methacrylate rod tested in cross section, (ii) of compound corner middle lamellae of loblolly pine (Pinus taeda) surrounded by relatively stiff wood cell walls, (iii) of wood cell walls embedded in a polypropylene matrix with some poorly bonded wood–matrix interfaces, (iv) of AlB2 particles embedded in an aluminum matrix, and (v) of silicon-on-insulator thin film on substrate near the free edge of the specimen.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).
2.Sneddon, I.N.: Relation between load and penetration in axisym-metric Boussinesq problem for punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
3.Bolshakov, A. and Pharr, G.M.: Inaccuracies in Sneddon's solution for elastic indentation by a rigid cone and their implications for nanoindentation data analysis, in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J.E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 189.
4.Troyon, M. and Lafaye, S.: About the importance of introducing a correction factor in the Sneddon relationship for nanoindentation measurements. Philos. Mag. 86(33–35), 5299 (2006).
5.Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., and Stone, D.S.: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23(4), 1113 (2008).
6.King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23(12), 1657 (1987).
7.Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601 (1986).
8.Stone, D.S.: Elastic rebound between an indenter and a layered specimen. I. Model. J. Mater. Res. 13(11), 3207 (1998).
9.Yoder, K.B., Stone, D.S., Hoffman, R.A., and Lin, J.C.: Elastic rebound between an indenter and a layered specimen. II. Using contact stiffness to help ensure reliability of nanoindentation measurements. J. Mater. Res. 13(11), 3214 (1998).
10.Fischer-Cripps, A.C.: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200(14–15), 4153 (2006).
11.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).
12.Cheng, Y-T. and Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44(4–5), 91 (2004).
13.Elmustafa, A.A., Kose, S., and Stone, D.S.: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22(4), 926 (2007).
14.Stone, D.S., Yoder, K.B., and Sproul, W.D.: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol. A 9(4), 2543 (1991).
15.Joslin, D.L. and Oliver, W.C.: New method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5(1), 123 (1990).
16.Sakai, M. and Nakano, Y.: Elastoplastic load-depth hysteresis in pyramidal indentation. J. Mater. Res. 17(8), 2161 (2002).
17.Stilwell, N.A. and Tabor, D.: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).
18.Duque, N.B., Melgarejo, Z.H., and Suarez, O.M.: Functionally graded aluminum matrix composites produced by centrifugal casting. Mater. Charact. 55(2), 167 (2005).
19.Melgarejo, Z.H., Suarez, O.M., and Sridharan, K.: Wear resistance of a functionally-graded aluminum matrix composite. Scr. Mater., 55(1 Spec), 95 (2006).
20.Melgarejo, Z.H., Suarez, O.M., and Sridharan, K.: Microstructure and properties of functionally graded Al–Mg–B composites fabricated by centrifugal casting. Compos. Part A: Appl. Sci. Manuf. 39(7), 1150 (2008).
21.Miller, N., Tapily, K., Baumgart, H., Cellar, G.K., Brunier, F., and Elmustafa, A.A.: Nanomechanical properties of strained silicon-on-insulator (SOI) films epitaxially grown on Si1–xGex and layer transferred wafer bonding, in Surface and Interfacial Nano-mechanics, edited by Cook, R.F., Ducker, W., Szlufarska, I., and Antrim, R.F. (Mater. Res. Soc. Symp. Proc. 1021E, Warrendale, PA, 2007), 1021–HH05.
22.Wimmer, R., Lucas, B.N., Tsui, T.Y., and Oliver, W.C.: Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci. Technol. 31(2), 131 (1997).
23. CGerber, E.: Contact Problems for the Elastic Quarter-Plane and for the Quarter Space (Stanford University, Palo Alto, CA, 1968), p. 100.
24.Chiang, S.S., Marshall, D.B., and Evans, A.G.: The response of solids to elastic/plastic indentation. I. Stresses and residual stresses. J. Appl. Phys. 53(1), 298 (1982).
25.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985), p. 452.
26.Deppisch, C., Liu, G., Shang, J.K., and Economy, J.: Processing and mechanical properties of AlB2 flake reinforced Al-alloy composites. Mater. Sci. Eng., A A225(1–2), 153 (1997).
27.Liu, K., Zhou, X.L., Chen, X-R., and Zhu, W-J.: Structural and elastic properties of AlB2 compound via first-principles calculations. Physica B (Amsterdam) 388(1–2), 213 (2007).
28.Vlassak, J.J. and Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42(8), 1223 (1994).
29.Hetenyi, M.: Method of solution for elastic quarter-plane. ASME Trans. J. Appl. Mech. Ser. E, J. Appl. Mech. 27(2), 289 (1960).
30.Hetenyi, M.: A general solution for the elastic quarter space. Trans. ASME Ser. E., J. Appl. Mech. 37(1), 70 (1970).
31.Keer, L.M., Lee, J.C., and Mura, T.: Hetenyi's elastic quarter space problem revisited. Int. J. Solids Struct. 19(6), 497 (1983).
32.Keer, L.M., Lee, J.C., and Mura, T.: A contact problem for the elastic quarter space. Int. J. Solids Struct. 20(5), 513 (1984).
33.Popov, G.Y.: An exact solution of the mixed elasticity problem in a quarter-space. Mech. Solids 38(6), 23 (2003).
34.Schwarzer, N., Hermann, I., Chudoba, T., and Richter, F.: Contact modelling in the vicinity of an edge. Surf. Coat. Techol. 146–147, 371 (2001).


Nanoindentation near the edge

  • J.E. Jakes (a1), C.R. Frihart (a1), J.F. Beecher (a1), R.J. Moon (a2), P.J. Resto (a1), Z.H. Melgarejo (a3), O.M. Suárez (a4), H. Baumgart (a5), A.A. Elmustafa (a6) and D.S. Stone (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed