Skip to main content Accessibility help
×
Home

Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers

  • S.P. Wen (a1), R.L. Zong (a1), F. Zeng (a1), Y. Gao (a1) and F. Pan (a1)...

Abstract

The microstructure, hardness, elastic modulus, and indentation creep of Ag/Cu multilayers prepared by magnetron sputtering were investigated by x-ray diffraction, transmission electron microscopy, and nanoindentation. The hardness values obey the Hall–Petch relationship as the periodicity decreases to 20 nm. For multilayers with periodicity smaller than 20 nm, the Hall–Petch relationship breaks down and the hardness values saturate at about 4.6 GPa; moreover, there are shear bands formed around their indents and strain bursts occurring during the load-holding process of indentation creep. These results imply that there is a transition of the deformation mechanism in the region where the periodicity is equal to 20 nm. This transition of the deformation mechanism can be ascribed to grain-size-dependent competition between the dislocations-mediated plasticity and grain-boundary sliding-mediated plasticity.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: panf@mail.tsinghua.edu.cn

References

Hide All
1Meyers, M.A., Mishra, A.Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 2006
2Li, H.Q.Ebrahimi, F.: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 2005
3Schuh, C.A., Nieh, T.G.Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 2003
4Sharma, P.Ganti, S.: On the grain-size-dependent elastic modulus of nanocrystalline materials with and without grain-boundary sliding. J. Mater. Res. 18(8), 1823 2003
5Shan, Z.W., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M.Mao, S.X.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 2004
6Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K.Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 2004
7Hasnaoui, A., Van Swygenhoven, H.Derlet, P.M.: Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation. Phys. Rev. B: Condens. Matter 66, 184112 2002
8Chinh, N.Q., Szommer, P., Horita, Z.Langdon, T.G.: Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 2006
9Zhang, G.P., Liu, Y., Wang, W.Tan, J.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 2006
10Misra, A., Hirth, J.P.Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 2005
11Jankowski, A.F.: The effect of strain on the elastic constants of noble metals. J. Phys. F 15, 1279 1985
12Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992
13Raman, V.Berriche, R.: An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. J. Mater. Res. 7(3), 627 1992
14Wen, S.P., Zong, R.L., Zeng, F., Gao, Y.Pan, F.: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Mater. 55, 187 2006
15Schuller, I.K.: New class of layered materials. Phys. Rev. Lett. 44, 1597 1980
16Feldmam, C., Ordway, F.Bernstein, J.: Distinguishing thin film and substrate contributions in microindentation hardness measurements. J. Vac. Sci. Technol., A 8(1), 117 1990
17Saha, R.Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 2002
18Gao, H., Chiu, C.H.Lee, J.: Elastic contact versus indentation modelling of multi-layered materials. Int. J. Solids Struct. 29, 2471 1992
19Doerner, M.F.Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986
20Akcakaya, E., Famell, G.W.Adler, E.L.: Dynamic approach for finding effective elastic and piezoelectric constants of superlattices. J. Appl. Phys. 68, 1009 1990
21Streitz, F.H., Cammarata, R.C.Sieradzki, K.: Surface-stress effects on elastic properties: Metallic multilayers. Phys. Rev. B: Condens. Matter 49, 10707 1994
22Goodall, R.Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 2006
23Anderson, P.M., Foecke, T.Hazzledine, P.M.: Dislocation- based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 1999
24Chu, X.Barnett, S.A.: Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 77, 4403 1995
25Misra, A., Verdier, M., Kung, H., Embury, J.D.Hirth, J.P.: Deformation mechanism maps for polycrystalline metallic multiplayers. Scripta Mater. 41, 973 1999
26Verdier, M., Huang, H., Spaepen, F., Embury, J.D.Kung, H.: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. 86, 5009 2006
27McKeown, J., Misra, A., Kung, H., Hoagland, R.G.Nastasi, M.: Microstructures and strength of nanoscale Cu–Ag multilayers. Scripta Mater. 46, 593 2002
28Siegel, R.W.Fougere, G.E.: Mechanical properties of nanophase metals. Nanostruct. Mater. 6, 205 1995
29Van Swygenhoven, H.: Polycrystalline materials: Grain boundaries and dislocations. Science 296, 66 2002
30Venkataraman, S.K., Kohlstedt, D.L.Gerberich, W.W.: Continuous microindentation of passivating surfaces. J. Mater. Res. 8, 685 1993
31Gouldstone, A., Koh, H-J., Zeng, K-Y., Giannakopoulos, A.E.Suresh, S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 2000
32Chiu, Y.L.Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 2002
33Schuh, C.A.Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 2003
34Hahn, H., Mondal, P.Padmanabhan, K.A.: Plastic deformation of nanocrystalline materials. Nanostruct. Mater. 9, 603 1997
35Sergueeva, A.V., Mara, N.A., Krasilnikov, N.A., Valiev, R.Z.Mukherjee, A.K.: Cooperative grain boundary sliding in nanocrystalline materials. Philos. Mag. 86, 5797 2006

Keywords

Related content

Powered by UNSILO

Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers

  • S.P. Wen (a1), R.L. Zong (a1), F. Zeng (a1), Y. Gao (a1) and F. Pan (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.