Skip to main content Accessibility help

Nanocrystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass

  • S. Venkataraman (a1), S. Scudino (a1), J. Eckert (a2), T. Gemming (a3), C. Mickel (a1), L. Schultz (a1) and D.J. Sordelet (a4)...


Cu47Ti33Zr11Ni8Si1 metallic glass powder was prepared by gas atomization. Decomposition in the amorphous alloy and primary crystallization has been studied by differential scanning calorimetry (DSC), x-ray diffraction (XRD), and transmission electron microscopy (TEM). The glassy powder exhibits a broad DSC exotherm prior to bulk crystallization. Controlled annealing experiments reveal that this exotherm corresponds to a combination of structural relaxation and nanocrystallization. A uniform featureless amorphous contrast is observed in the TEM prior to the detection of nanocrystals of 4–6 nm in size. High-resolution TEM studies indicate that this nanocrystalline phase has a close crystallographic relationship with the γ–CuTi phase having a tetragonal structure. The product of the main crystallization event is also nanocrystalline, hexagonal Cu51Zr14, having dimensions of 20 nm. However, there is no evidence for possible amorphous phase separation prior to the nanocrystallization events.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).
2.Fecht, H.J., Johnson, W.L.: Thermodynamic properties and metastability of bulk metallic glasses. Mater. Sci. Eng. A 375–377, 2 (2004).
3.Löffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 (2003).
4.Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).
5.Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A., Macht, M.P.: Atomic diffusion in the supercooled liquid and glassy states of Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Phys. Rev. Lett. 75, 2364 (1995).
6.Peker, A., Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 (1993).
7.Schneider, S., Thiyagarajan, P., Johnson, W.L.: Formation of nanocrystals based on the decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 68, 493 (1996).
8.Macht, M.P., Wanderka, N., Wiedenmann, A., Wollenberger, H., Wei, Q., Fecht, H.J., Close, S.G.: Decomposition of the supercooled liquid of the bulk amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5. Mater. Sci. Forum 225–227, 65 (1996).
9.Liu, W., Johnson, W.L.: Precipitation of bcc nanocrystals in bulk Mg–Cu–Y amorphous alloys. J. Mater. Res. 11, 2388 (1996).
10.Löffler, J.F., Bossuyt, S., Glade, S.C., Johnson, W.L., Wagner, W., Thiyagarajan, P.: Crystallization of bulk amorphous Zr– Ti(Nb)–Cu–Ni–Al. Appl. Phys. Lett. 77, 525 (2000).
11.He, Y., Chen, H., Shiflet, G.J., Poon, S.J.: On the structural nature of aluminium based metallic glasses. Philos. Mag. Lett. 61, 297 (1990).
12.Inoue, A., Kimura, H.M., Sasamori, K., Masumoto, T.: Ultrahigh strength of rapidly solidified Al96−xCr3Ce1Cox (x = 1,1.5, and 2%) alloys containing an icosahedral phase as a main component. Mater. Trans. JIM 35, 85 (1994).
13.Zhong, Z.C., Jiang, X.Y., Greer, A.L.: Nanocrystallization in Al-based amorphous alloy. Philos. Mag. B 76, 505 (1997).
14.Köster, U., Janlewing, R.: Fragility parameter and nanocrystallization of metallic glasses. Mater. Sci. Eng. A 375–377, 223 (2004).
15.Calin, M., Köster, U.: Nanocrystallization of Al–Ni–Y and Al–Ni–Nd metallic glasses. Mater. Sci. Forum 269–272, 749 (1998).
16.Foley, J.C., Allen, O.R., Perepezko, J.H.: Analysis of nanocrystal development in Al–Y–Fe and Al–Sm glasses. Scripta Mater. 35, 655 (1996).
17.Allen, O.R., Foley, J.C., Perepezko, J.H.: Nanocrystal development during primary crystallization of amorphous alloys. Acta Mater. 46, 431 (1998).
18.Omata, S., Tanaka, Y., Ishida, T., Sato, A., Inoue, A.: Nucleation and growth kinetics of small crystals in amorphous Al88Ce2Ni9Fe. Philos. Mag. A 76, 387 (1997).
19.Tsai, A.P., Kamiyama, T., Kawamura, Y., Inoue, A., Masumoto, T.: Formation and precipitation mechanism of nanoscale Al particles in Al–Ni base amorphous alloys. Acta Mater. 45, 1477 (1997).
20.Kelton, K.F.: A new model for nucleation in bulk metallic glasses. Philos. Mag. Lett. 77, 337 (1998).
21.Kelton, K.F.: Time dependent nucleation in partitioning transformations. Acta Mater. 48, 1967 (2000).
22.Schneider, S., Thiyagarajan, P., Geyer, U., Johnson, W.L.: SANS of bulk metallic ZrTiCuNiBe glasses. Phys. B 241–243, 918 (1997).
23.Lee, K.L., Kui, H.W.: Phase separation in undercooled molten Pd80Si20: Part I. J. Mater. Res. 14, 3653 (1999).
24.Löffler, J.F., Johnson, W.L.: Model for decomposition and nanocrystallization of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 76, 3394 (2000).
25.Gangopadhyay, A.K., Croat, T.K., Kelton, K.F.: The effect of phase separation on subsequent crystallization in Al88Gd6La2Ni4. Acta Mater. 48, 4035 (2000).
26.Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T., Hono, K.: In situ formed two- phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 (2004).
27.Chou, C.P., Turnbull, D.: Transformation behaviour of Pd–Au–Si metallic glasses. J. Non-Cryst. Solids 17, 169 (1975).
28.Chen, H.S.: Glass temperature, formation and stability of Fe,Co, Ni, Pd and Pt based glasses. Mater. Sci. Eng. 23, 151 (1976).
29.Mattern, N., Kühn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H., Schultz, L.: Microstructure and thermal stability of two phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 (2005).
30.Tanner, L.E., Ray, R.: Phase separation in Zr–Ti–Be metallic glasses. Scripta Metall. 14, 657 (1980).
31.Nagahama, D., Ohkubo, T., Hono, K.: Crystallization of Zr36Ti24Be40 metallic glass. Scripta Mater. 49, 729 (2003).
32.Deng, D., Argon, A.S.: Structural relaxation and embrittlement of Cu59Zr41 and Fe80B20 glasses. Acta Metall. 34, 2011 (1986).
33.Bormann, R., Gärtner, F., Haider, F.: Determination of the free energy of equilibrium and metastable phases in the Cu–Zr system. Mater. Sci. Eng. 97, 79 (1988).
34.Busch, R., Gärtner, F., Schneider, S., Bormann, R., Haasen, P. The earliest stage of the solid state amorphization reaction in the Zr–Co system, in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M.A., Floro, J.A., Sinclair, R., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 343 Pittsburgh, PA, 1994), p. 229.
35.Okumara, A.H., Inoue, A., Masumoto, T.: Heating rate dependence of two glass transitions and phase separation for a La55Al25Ni20 amorphous alloy. Acta Metall. Mater. 41, 915 (1993).
36.Inoue, A., Chen, S., Masumoto, T.: Zr–Y base amorphous alloys with two glass transitions and two supercooled liquid regions. Mater. Sci. Eng. A 179–180, 346 (1994).
37.Busch, R., Schneider, S., Peker, A., Johnson, W.L.: Decomposition and primary crystallization in Zr41.2Ti13.8Cu12.5Ni10Be22.5 melts. Appl. Phys. Lett. 67, 1544 (1995).
38.Martin, I., Ohkubo, T., Ohnuma, M., Deconihout, B., Hono, K.: Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass. Acta Mater. 52, 4427 (2004).
39.Choi-Yim, H., Busch, R., Johnson, W.L.: The effect of silicon on the glass forming abiltity of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Phys. 83, 7993 (1998).
40.Miller, M.K., Russell, K.F., Martin, P.M., Busch, R., Johnson, W.L.: Characterization of bulk metallic glasses with the atom probe. J. Phys. IV 6, 217 (1996).
41.Glade, S.C., Löffler, J.F., Bossuyt, S., Johnson, W.L., Miller, M.K.: Crystallization of amorphous Cu47Ti34Zr11Ni8. J. Appl. Phys. 89, 1573 (2001).
42.Miller, M.K., Glade, S.C., Johnson, W.L.: Phase separation in Cu47Ti33Zr11Ni8Si1. Surf. Interface Anal. 36, 598 (2004).
43.Calin, M., Eckert, J., Schultz, L.: High strength Cu-Ti rich bulk metallic glasses and nanocomposites. Z. Metallkd. 94, 615 (2003).
44.Calin, M., Stoica, M., Eckert, J., Yavari, A.R., Schultz, L.: Glass formation and crystallization of Cu47Ti33Zr11Ni8X1 (X = Fe, Si, Sn, Pb) alloys. Mater. Sci. Eng. A 392, 169 (2005).
45.Sordelet, D.J., Kramer, M.J., Besser, M.F., Rozhkova, E.: Time resolved studies of Ti34−x Cu47Zr11Ni8Six metallic glass devitrification using high temperature x-ray powder diffraction. J. Non-Cryst. Solids 290, 163 (2001).
46.Suryanarayana, C. Rapid solidification, in Processing of Metals and Alloys, Materials Science & Technology (A comprehensive treatment), Vol. 15, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH Publishers, Weinheim, Germany, 1991), p. 64.
47.Bae, D.H., Lee, M.H., Sordelet, D.J.: Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders. Appl. Phys. Lett. 83, 2312 (2003).
48.Inoue, A., Masumoto, T., Chen, H.S.: Enthalpy relaxation behaviour of metal–metal (Zr–Cu) amorphous alloys upon annealing. J. Mater. Sci. 20, 4057 (1985).
49. PDF # 07-0114, PCPDF Version 2.2 (JCPDS-International Centre for Diffraction Data (ICDD), Newton Square, PA, 2001).
50.Lin, X.H., Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).
51.Spaepen, F., Turnbull, D. Formation of metallic glasses, in Rapidly Quenched Metals, edited by Grant, N.J. and Giessen, B.C. (MIT Press, Cambridge, MA, 1976), p. 205.
52.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).
53.Spaepen, F., Turnbull, D.: Metallic glasses. Ann. Rev. Phys. Chem. 35, 241 (1984).
54.Lu, Z.P., Liu, C.T.: A new glass forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).
55.Lawley, A.: Atomization: The production of metal powders. Monographs in P/M series No. 1. (MPIF, Princeton, NJ, 1992).
56.van den Beukel, A., Radelaar, S.: On the kinetics of structural relaxation in metallic glasses. Acta Metall. Mater. 31, 419 (1983).
57.Cohen, M.H., Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 (1959).
58.Vandenbeukel, A., Sietsma, J.: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 (1990).
59.Daniel, B.S.S., Reger-Leonhard, A., Heilmaier, M., Eckert, J., Schultz, L.: Thermal relaxation and high temperature creep of Zr55Cu30Al10Ni5 bulk metallic glass. Mech. Time-Depend. Mater. 6, 193 (2002).
60.Drijver, J.W., Mulder, A.L., and Radelaar, S.: Compositional effects in the observation of structural relaxation in metallic glasses by DSC, in Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai, Japan, edited by Masumoto, T. and Suzuki, K., (Japan Institute of Metals, Sendai, Japan, 1982), p. 535.
61.Chen, H.S.: Kinetics of low temperature structural relaxation in two (Fe–Ni)-based metallic glasses. J. Appl. Phys. 52, 1868 (1981).
62.Chen, H.S.: On the mechanisms of structural relaxation in Pd48Ni32P20 glass. J. Non-Cryst. Solids 46, 289 (1981).
63.Johari, G.P.: Calorimetric features of high enthalpy amorphous solids and glass softening temperature of water. J. Phys. Chem. B 107, 9063 (2003).
64.Egami, T.: Structural relaxation in amorphous alloys-compositional short range ordering. Mater. Res. Bull. 13, 557 (1978).
65.Inoue, A., Masumoto, T., Chen, H.S.: Enthalpy relaxation behaviour of (Fe,Co,Ni)75Si10B15 amorphous alloys upon low temperature annealing. J. Mater. Sci. 19, 3953 (1984).
66.Ohlberg, S.M., Golob, H.R., and Stickler, D.W.: Crystal nucleation by glass in glass separation, in Symposium on Nucleation and Crystallization in Glasses and Melts, edited by Reser, M.K., Smith, G., and Insley, H. (The American Ceramic Society, Columbus, OH 1962), p. 55.
67.Cahn, J.W., Charles, R.J.: Initial stages of phase separation in glasses. Phys. Chem. Glasses 6, 181 (1965).
68.Ramsden, A.H., James, P.F.: The effects of amorphous phase separation on crystal nucleation kinetics in BaO-SiO2 glasses. 1. General survey. J. Mater. Sci. 19, 1406 (1984).
69.Goodhew, P.J., Humphreys, J., and Beanland, R., Electron Microscopy and Analysis (Taylor and Francis, London and New York, 2001).
70.Scott, M.G. Crystallization, in Crystallization in Amorphous Metallic Alloys, edited by Luborksy, F.E. (Butterworths, London, UK, 1983), p. 144.
71.Köster, U., Herold, U. Crystallization of metallic glasses, in Glassy Metals I, Topics in Applied Physics, Vol. 46, edited by Güntherodt, H.J. and Beck, H. (Springer-Verlag, Heidelberg, Berlin, 1981), p. 225.
72.Concustell, A., Révész, A., Surinach, S., Varga, L.K., Heunen, G., Baro, M.D.: Microstructural evolution during decomposition and crystallization of the Cu60Zr20Ti20 amorphous alloy. J. Mater. Res. 19, 505 (2004).
73.Chen, L.C., Spaepen, F.: Calorimetric evidence for the microquasicrystalline structure of amorphous Al-transition metal alloys. Nature 336, 366 (1988).
74.De Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., Niessen, A.K.: Cohesion in Metals (Elsevier Science Publishers, North-Holland, Amsterdam, The Netherlands, 1988).


Nanocrystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass

  • S. Venkataraman (a1), S. Scudino (a1), J. Eckert (a2), T. Gemming (a3), C. Mickel (a1), L. Schultz (a1) and D.J. Sordelet (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed