Skip to main content Accessibility help
×
Home

Nanocomposite polymer electrolytes comprising PVA-graft-PEGME/TiO2 for Li-ion batteries

  • Hamide Aydın (a1) and Ayhan Bozkurt (a1)

Abstract

The present work investigates inorganic–organic nanocomposite polymer electrolytes (NCPEs) for lithium-ion battery applications. Nanoscale TiO2 particles were dispersed into boron comprising poly(vinyl alcohol) (PVA)-g-poly(ethylene glycol) methyl ether (PEGME) host polymer at several percentages. During preparation, nanocomposite matrices were doped with CF3SO3Li at several compositions and homogeneous soft solid materials were obtained. The interactions between host copolymer and inorganic additive and dopant were studied by Fourier transform infrared spectroscopy. The surface morphology of the NCPEs was investigated by scanning electron microscopy and their thermal properties were studied by thermogravimetric analysis and differential scanning calorimetry. The ionic conductivity of these novel NCPEs was studied by dielectric-impedance spectroscopy. High ambient temperature Li+ ion conducting (∼10−4 S/cm) NCPE matrices can be suggested for lithium battery applications.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: bozkurt@fatih.edu.tr

References

Hide All
1. Yun, Y.S., Song, S.W., Lee, S.Y., Kim, S.H., and Kim, D.W.: Lithium metal polymer cells assembled with gel polymer electrolytes containing ionic liquid. Curr. Appl. Phys. 10, e97 (2010).
2. Yuna, Y.S., Kima, J.H., Leeb, S-Y., Shimc, E-G., and Kima, D-W.: Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes. J. Power Sources 196, 67506755 (2011).
3. Tarascon, J-M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359367 (2001).
4. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J-M., and Van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366377 (2005).
5. Lee, Y-S., Ju, S.H., Kim, J-H., Hwang, S.S., Choi, J-M., Sun, Y-K., Kim, H., Scrosati, B., and Kim, D-W.: Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries. Electrochem. Commun. 17, 1821 (2012).
6. Susan, M.A.B.H., Kaneko, T., Noda, A., and Watanabe, M.: Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 49764983 (2005).
7. Matsumi, N., Sugai, K., Miyake, M., and Ohno, H.: Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules 39, 69246927 (2006).
8. Ohno, H., Yoshizawa, M., and Ogihara, W.: A new type of polymer gel electrolyte: Zwitterionic liquid/polar polymer mixture. Electrochim. Acta 48, 20792083 (2003).
9. Sekhon, S.S. and Singh, H.P.: Ionic conductivity of PVDF-based polymer gel electrolytes. Solid State Ionics 152153, 169174 (2002).
10. Lu, J.M., Yan, F., and Texter, J.: Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 34, 431448 (2009).
11. Borghini, M.C., Mastragostino, M., Passerini, S., and Scrosati, B.: Electrochemical properties of polyethylene oxide-Li[(CF3SO2)2N]-gamma-LiAlO2 composite polymer electrolytes. J. Electrochem. Soc. 142, 21182121 (1995).
12. Fan, J. and Fedkiw, P.S.: Composite electrolytes prepared from fumed silica, polyethylene oxide oligomers, and lithium salts, J. Electrochem. Soc. 144, 399408 (1997).
13. Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B.: Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456458 (1998).
14. Strauss, E., Golodnitsky, D., and Peled, E.: Cathode modification for improved performance of rechargeable lithium/composite polymer electrolyte/pyrite battery. Electrochem. Solid-State Lett. 2, 115117 (1999).
15. Yang, C.M., Kim, H.S., Na, B.K., Kum, K.S., and Cho, B.W.: Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. J. Power Sources 156, 574580 (2006).
16. Das, S.K., Mandal, S.S., and Bhattacharyya, A.J.: Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional (“Janus”) “soggy sand” electrolytes. Energy Environ. Sci. 4, 13911399 (2011).
17. Choi, N.S., Lee, Y.M., Lee, B.H., Lee, J.A., and Park, J.K.: Nanocomposite single ion conductor based on organic–inorganic hybrid. Solid State Ionics 167, 293299 (2004).
18. Sun, J., Bayley, P., MacFarlane, D.R., and Forsyth, M.: Gel electrolytes based on lithium modified silica nano-particles. Electrochim. Acta 52, 70837090 (2007).
19. Nordström, J., Matic, A., Sun, J., Forsyth, M., and MacFarlane, D.R.: Aggregation, ageing and transport properties of surface modified fumed silica dispersions. Soft Matter 6, 22932299 (2010).
20. Steinberg, H.: Organoboron Chemistry, Vol. 1 (Interscience, London, 1964), p. 871.
21. Mehta, M.A. and Fujinami, T.: Li+ transference number enhancement in polymer electrolytes by incorporation of anion trapping boroxine rings into the polymer host. Chem. Lett. 26, 915916 (1997).
22. Mehta, M.A. and Fujinami, T.: Novel inorganic–organic polymer electrolytes – preparation and properties. Solid State Ionics 113115, 187192 (1998).
23. Forsyth, M., Sun, J., Zhou, F., and MacFarlane, D.R.: Enhancement of ion dissociation in polyelectrolyte gels. Electrochim. Acta 48, 21292136 (2003).
24. Kato, Y., Suwa, K., Yokoyama, S., Yabe, T., Ikuta, H., Uchimoto, Y., and Wakihara, M.: Thermally stable solid polymer electrolyte containing borate ester groups for lithium secondary battery. Solid State Ionics 152153, 155159 (2002).
25. Matsumi, N., Mizumo, T., and Ohno, H.: Preparation of comb-like organoboron polymer electrolyte without generation of salt. Chem. Lett. 33, 372373 (2004).
26. Pennarun, P-Y. and Jannasch, P.: Electrolytes based on LiClO4 and branched PEG–boronate ester polymers for electrochromics. Solid State Ionics 176, 11031112 (2005).
27. Pennarun, P-Y., Jannasch, P., Papaefthimiou, S., Skarpentzos, N., and Yianoulis, P.: High coloration performance of electrochromic devices assembled with electrolytes based on a branched boronate ester polymer and lithium perchlorate salt. Thin Solid Films 514, 258266 (2006).
28. Aydın, H., Şenel, M., Erdemi, H., Baykal, A., Tülü, M., Ata, A., and Bozkurt, A.: Inorganic?organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries. J. Power Sources 196, 14251432 (2011).
29. Chetri, P., Dass, N.N., and Sarma, N.S.: Conductivity measurement of poly(vinyl borate) and its lithium derivative in solid state. Mater. Sci. Eng., B 139, 261264 (2007).
30. Venckatesh, R., Balachandaran, K., and Sivaraj, R.: Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route. Int. Nano Lett. 2, 15 (2012).
31. Zhou, J., Gao, D., Li, Z., Lei, G., Zhao, T., and Yi, X.: Nanocomposite polymer electrolytes prepared by in situ polymerization on the surface of nanoparticles for lithium-ion polymer batteries. Pure Appl. Chem. 82, 21672174 (2010).
32. Şenel, M., Bozkurt, A., and Baykal, A.: An investigation of the proton conductivities of hydrated poly(vinyl alcohol)/boric acid complex electrolytes. Ionics 13, 263266 (2007).
33. Uma, T., Mahalingan, T., and Stimming, U.: Solid polymer electrolytes based on poly(vinyl chloride)–lithium sulfate. Mater. Chem. Phys. 90, 239244 (2005).
34. Alloin, F., D’Apreaa, A., Kissi, N.E., Dufresne, A., and Bossard, F.: Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim. Acta 55, 51865194 (2010).
35. Cohen, M.H. and Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 11641169 (1959).
36. Grest, G.S. and Cohen, M.H.: Liquid-glass transition: Dependence of the glass transition on heating and cooling rates. Phys. Rev. B 21, 41134117 (1980).
37. Raghavan, P., Zhao, X., Kim, J-K., Manuel, J., Chauhan, G.S., Ahn, J-H., and Nah, C.: Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidenefluorideco-hexafluoropropylene) with nano-sized ceramic fillers. Electrochim. Acta 54, 228234 (2008).
38. Walls, H., Zhou, J., Yerian, J., and Fedkiw, P.: Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J. Power Sources 89, 156162 (2000).
39. Shriver, D.F. and Farrington, G.C.: Solid ionic conductors. Chem. Eng. News 63, 4257 (1985).
40. Harris, C.S., Shriver, D.F., and Ratner, M.A.: Complex formation of polyethylenimine with sodium triflate and conductivity behavior of the complexes. Macromolecules 19, 987989 (1986).
41. Tipton, A.L., Lonergan, M.C., Ratner, M.A., Shriver, D.F., Wong, T.T.Y., and Han, K.: Conductivity and dielectric constant of PPO and PPO-based solid electrolytes from Dc to 6 GHz. J. Phys. Chem. 98, 41484154 (1994).
42. Papke, B.L., Ratner, M.A., and Shriver, D.F.: Conformation, ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts. J. Electrochem. Soc. 129, 16941701 (1982).
43. Bruce, P.G. and Vincent, C.A.: Polymer electrolytes. J. Chem. Soc., Faraday Trans. 89, 31873203 (1993).
44. Bandara, L.R.A.K., Dissanayake, M.A.K.L., and Mellancer, B-E.: Ionic conductivity of plasticized (PEO)-LiCF3SO3 electrolytes. Electrochim. Acta 43, 14471451 (1998).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed