Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:39:22.463Z Has data issue: false hasContentIssue false

Mutually reactive elements in a glass host matrix: Ag and S ion implantation in silica

Published online by Cambridge University Press:  31 January 2011

R. Bertoncello
Affiliation:
I.N.S.T.M. and Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131-Padova, Italy
S. Gross
Affiliation:
I.N.S.T.M. and Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131-Padova, Italy
F. Trivillin
Affiliation:
I.N.S.T.M. and Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131-Padova, Italy
E. Cattaruzza*
Affiliation:
Istituto Nazionale per la Fisica della Materia (I.N.F.M.) and Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131-Padova, Italy
G. Mattei
Affiliation:
Istituto Nazionale per la Fisica della Materia (I.N.F.M.) and Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131-Padova, Italy
F. Caccavale
Affiliation:
Istituto Nazionale per la Fisica della Materia (I.N.F.M.) and Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131-Padova, Italy
P. Mazzoldi
Affiliation:
Istituto Nazionale per la Fisica della Materia (I.N.F.M.) and Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131-Padova, Italy
G. Battaglin
Affiliation:
Istituto Nazionale per la Fisica della Materia (I.N.F.M.) and Dipartimento di Chimica Fisica, Università di Venezia, Dorsoduro 2137, 30123-Venezia, Italy
S. Daolio
Affiliation:
Istituto di Polarografia ed Elettrochimica Preparativa-C.N.R., c.so Stati Uniti 4, 35127-Padova, Italy
*
a)Address all correspondence to this author. e-mail: cattaruzza@padova.infm.it
Get access

Abstract

Ag, S, Ag + S, and S + Ag single and double ion implantations in silica glass were performed at room temperature. The implantation energies were chosen in order to get a projected range of 40 nm. The fluences were 2 × 1016 S+ cm−2 and 5 × 1016 Ag+ cm−2. Silver interacts weakly with the host silica matrix and forms essentially metallic clusters; this weak interaction between Ag and SiO2 induces formation of silver silicate rather than silver oxide. Double ion implantations of silver and sulfur lead to chemical interaction between the two species that is critically influenced by the implantation sequence. In particular, in the Ag + S sample silver and sulfur atoms react to form crystalline core (Ag)–shell (Ag2S) nanoclusters.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kobayashi, T., Nonlinear Opt. 1, 91 (1991).Google Scholar
2.Vogel, E.M., J. Am. Ceram. Soc. 72, 719 (1989).CrossRefGoogle Scholar
3.Hache, F., Ricard, D., and Flytzanis, C., J. Opt. Soc. Am. B3, 1647 (1986).CrossRefGoogle Scholar
4.Genzel, L., Martin, T.P., and Kreibig, U., Z. Physik B2, 339 (1975).CrossRefGoogle Scholar
5.Stegeman, G.I. and Seaton, C. T., J. Appl. Phys. 58, 57 (1985).CrossRefGoogle Scholar
6.Mazzoldi, P., Arnold, G. W., Battaglin, G., Gonella, F., and Haglund, R. F. Jr, J. Nonlinear Opt. Phys. Mat. 5 (2), 285 (1996) and references therein.CrossRefGoogle Scholar
7.Webb, A.P. and Townsend, P.D., Phys. D: Appl. Phys. 9, 1343 (1976).CrossRefGoogle Scholar
8.Wang, C., Tao, Y., and Wang, S., J. Non-Cryst. Solids 52, 589 (1982).CrossRefGoogle Scholar
9.Naik, I. K., Appl. Phys. Lett. 43, 519 (1983).CrossRefGoogle Scholar
10.Mazzoldi, P., Arnold, G. W., Battaglin, G., Bertoncello, R., and Gonella, F., Nucl. Instrum. Methods B91, 478 (1994) and references therein.CrossRefGoogle Scholar
11.Battaglin, G., Nucl. Instrum. Methods B116, 102 (1996).CrossRefGoogle Scholar
12.Bertoncello, R., Glisenti, A., Granozzi, G., Battaglin, G., Caccavale, F., Cattaruzza, E., and Mazzoldi, P., J. Non-Cryst. Solids 162, 205 (1993).CrossRefGoogle Scholar
13.Cattaruzza, E., Mattei, G., Mazzoldi, P., Bertoncello, R., Battaglin, G., and Mirenghi, L., Appl. Phys. Lett. 67 (19), 2884 (1995).CrossRefGoogle Scholar
14.Cattaruzza, E., Bertoncello, R., Trivillin, F., Mazzoldi, P., Battaglin, G., Mirenghi, L., and Rotolo, P., J. Mater. Res. 11, 229 (1996).CrossRefGoogle Scholar
15.Mazzoldi, P., Caccavale, F., Cattaruzza, E., Chakraborty, P., Tramontin, L., Boscolo-Boscoletto, A., Bertoncello, R., Trivillin, F., Battaglin, G., and Arnold, G. W., Nucl. Instrum. Methods B91, 505 (1994).CrossRefGoogle Scholar
16.Bertoncello, R., Trivillin, F., Cattaruzza, E., Mazzoldi, P., Arnold, G. W., Battaglin, G., and Catalano, M., J. Appl. Phys. 77 (3), 1294 (1995).CrossRefGoogle Scholar
17.Rai, A.K. and Bhattacharya, R. S., J. Mater. Res. 6, 2375 (1991).CrossRefGoogle Scholar
18.Hosono, H., Phys. Rev. Lett. 74 (1), 110 (1995).CrossRefGoogle Scholar
19.Magruder, R.H. III, Osborne, D. H. Jr, and Zuhr, R. A., J. Non-Cryst. Solids 176, 299 (1994).CrossRefGoogle Scholar
20.Magruder, R.H. III and Zuhr, R. A., J. Appl. Phys. 77 (7), 3546 (1995).CrossRefGoogle Scholar
21.Fukumi, K., Chayahara, A., Kitamura, N., Akai, T., Hayakawa, J., Fujii, K., and Satou, M., J. Non-Cryst. Solids 178, 155 (1994).CrossRefGoogle Scholar
22.Hosono, H. and Zuhr, R. A., J. Non-Cryst. Solids 178, 160 (1994).CrossRefGoogle Scholar
23.Was, G.S., Rotberg, V., Platts, D., and Bomback, J., Appl. Phys. Lett. 66 (2), 142 (1995).CrossRefGoogle Scholar
24.Carnera, A., Mazzoldi, P., Boscolo-Boscoletto, A., Caccavale, F., Bertoncello, R., Granozzi, G., Spagnol, I., and Battaglin, G., J. Non-Cryst. Solids 125, 293 (1990).CrossRefGoogle Scholar
25.Mazzoldi, P., Caccavale, F., Cattaruzza, E., Boscolo-Boscoletto, A., Bertoncello, R., Glisenti, A., Battaglin, G., and Gerardi, C., Nucl. Instrum. Methods B65, 367 (1992).Google Scholar
26.Anderson, T.S., Magruder, R. H. III, Kinser, D. L., Zuhr, R. A., and Thomas, D. K., Nucl. Instrum. Methods B124, 40 (1997) and references therein.CrossRefGoogle Scholar
27.Biersack, J. P. and Haggmark, L.G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
28.Shirley, D.A., Phys. Rev. 55, 4709 (1972).CrossRefGoogle Scholar
29.Yeh, J. J. and Lindau, I., At. Data Nucl. Data Tables 32, 1 (1985).CrossRefGoogle Scholar
30.Antonello, M., Arnold, G. W., Battaglin, G., Bertoncello, R., Cattaruzza, E., Colombo, P., Mattei, G., Mazzoldi, P., and Trivillin, F., J. Mater. Chem. 8 (2), 457 (1998).CrossRefGoogle Scholar
31.Maxwell-Garnett, J. C., Philos, Trans. R. Soc. 203, 885 (1904).Google Scholar
32.Mie, G., Ann. Physik 25, 377 (1908).CrossRefGoogle Scholar
33.Doremus, R. H., J. Chem. Phys. 42, 414 (1965) and references therein.CrossRefGoogle Scholar
34.Arnold, G. W. and Borders, J. A., J. Appl. Phys. 48 (4), 1488 (1977).CrossRefGoogle Scholar
35.Kreibig, U. and Vollmer, M., in Optical Properties of Metal Clusters, edited by Gonser, U., Osgood, R. M. Jr, Panish, M.B., and Sakaki, H. (Springer Series in Materials Science, SpringerVerlag, Berlin, Heidelberg, 1995), Vol. 25.CrossRefGoogle Scholar
36.Neddersen, J., Chumanov, G., and Cotton, T. M., Appl. Spectrosc. 47, 1959 (1992).CrossRefGoogle Scholar
37.Ferrari, M., Gratton, L. M., Maddalena, A., Montagna, M., and Tosello, C., J. Non-Cryst. Solids 191, 101 (1995).CrossRefGoogle Scholar
38.Matsunami, N. and Hosono, H., Appl. Phys. Lett. 63, 2050 (1993).CrossRefGoogle Scholar
39.Berger, A., J. Non-Cryst. Solids 163, 185 (1993).CrossRefGoogle Scholar
40.Ruppin, R., J. Phys. Soc. Jpn. 58, 1446 (1989).CrossRefGoogle Scholar
41.Gonella, F., Mattei, G., Mazzoldi, P., Cattaruzza, E., Arnold, G. W., Battaglin, G., Calvelli, P., Polloni, R., Bertoncello, R., and Haglund, R. F. Jr, Appl. Phys. Lett. 69 (20), 3101 (1996).CrossRefGoogle Scholar
42.Averitt, R.D., Sarkar, D., and Halas, N.J., Phys. Rev. Lett. 78, 4217 (1997).CrossRefGoogle Scholar
43.Briggs, D. and Seah, M. P., in Practical Surface Analysis (J. Wiley & Sons, Chichester, U.K., 1983).Google Scholar
44.X-ray Photoelectron Spectroscopy Database, version 1.0 (National Institute of Standards and Technology, Gaithersburg, MD, 1989).Google Scholar
45.Moulder, J. F., Stickle, W.F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corp., Eden Prairie, MN, 1992).Google Scholar
46.Hattori, T., J. Vac. Sci. Technol. B11 (4), 1528 (1993).CrossRefGoogle Scholar